

Principles of Systems Dynamics Modeling and Analysis

Pål I. Davidsen pal.davidsen@geog.uib.no Department of Geography, University of Bergen, N-5020 Bergen, tel. 55 58 41 34

Jay Wright Forrester

Knowledge elicitation

System Dynamics

Problem identification Problem solving

Management

Knowledge dissemination

Behavior

Behavior

Structure

Behavior Structure

Structure

POILON

Structure

Behavior Structure

System Dynamics: Identify, understand, and utilize the relationship:

Behavior Structure in complex, dynamic systems

Complexity

Non-linearity

Complexity a synergy of

Accumulations ≡ Latencies / Delays

Feedbacks

Non-linearities

Complexity

Accumulations \equiv Latencies / Delays

... the origin of dynamics

Causality that spans time

Instantaneous causality

A

B

C

In a causality that spans time nothing happens instantaneously

Accumulations

creates distance in time and space

Just like driving a car

Accumulation

Complexity

Non-linearity

Complexity

Accumulations E Latency / Delay

From the origin of dynamics to...

Complexity

Accumulations E Latency / Delay

... circular causality

... not only do

Effects feed back

Effects feed back

Effects also synergize

Accumulation

Complexity

Yield Investments * Productivity Investments Productivity From Technology Effect Of Resource Availability **On Productivity**

Investments

Unutilized Resource

Unutilized Resource

Technically Unavailable Resource Remaining

Technically Available Resource Remaining

Unutilized Resource

Technological Level

Technically Unavailable Resource Remaining

Technically Available Resource Remaining

Unutilized Resource

Technological Level

Exploitation Level Technically Unavailable Resource Remaining

Technically Available Resource Remaining

Unutilized Resource

Total Resource

Technically Unavailable Resource Remaining

Technically Available Resource Remaining

Productivity From Technology

Techn. Available Resource Remaining / Unutilized Resource

Unutilized Resource

Technological Level

Technically Unavailable Resource Remaining

Technically Available Resource Remaining

Productivity From Technology

Techn. Available Resource Remaining / Unutilized Resource

Unutilized Resource

Total Resource

Technically Unavailable Resource Remaining

Technically Available Resource Remaining

Effect of Resource Availability On Productivity = Unutilized Resource / Total Resource

Technically Unavailable Resource Remaining

Technically Available Resource Remaining

Exploitation Level

Effect of Resource Availability On Productivity

Unutilized

Resource

Unutilized Resource / Total Resource

Yield Investments * Productivity Investments Techn. Available Resource Remaining Unutilized Resource Unutilized Resource Total Resource

Technically Unavailable Resource Remaining

Technically Available Resource Remaining

Technically Available Resource Remaining

Exploitation Level Technically Available Resource Remaining

....so that non-linearity

causes

effects to become blended

=> it difficult to

establish experience with respect to underlying causes (diagnosis) and leverage points, doses and timing (treatment)

Management from a System Dynamics perspective Management from a System Dynamics perspective

Strengthen favorable loops

Management from a System Dynamics perspective

Strengthen favorable loops -Weaken unfavorable loops-

Challenge:

What loops are favorable or unfavorable varies from one point in time to the next

Biotechonomy

A system dynamics approach

Pål I. Davidsen Professor Department of Geography University of Bergen pal.davidsen@uib.no