Project 3 Risk consideration for safe, effective and sustainable structures

Time frame the Core task 1 activities

	20	14		20	15			20	16		2017			
	111	IV	I	П		IV	I	11	111	IV	I	П		IV
1 Develop method for														
assesment of bridge	х	х	х	х	х	х	х	х	x	х				
dynamic characteristics.		~	~	~			~	~	~	~				
1.1.Studie about vehicle														
weight and speed impact on														
the bridge structure			Х	Х	Х	Х	Х	Х	х	Х				
dynamic characteristics.														
1.2.Develop a method to														
asess heavy and very heavy							V	v	v	v				
vehicle dynamic effects on							X	X	X	X				
the bridge structure.														
1.3.Determine and justify														
limit values of the bridge														
dynamic characteristics														
based on the developed											Х	Х	Х	Х
methods for assesment of														
bridge dynamic														
characteristics.														
2. Analyse traffic load														
influence on bridge														
structure using theoretical	Х	Х	Х	Х	х	х	Х	Х	Х	Х				
probability distribution														
models.														
2.1. Develop a method for														
external action correlation	Х	Х	Х	Х	Х	Х	Х							
forecasting.														
2.2.Study about properties		.,												
range of materials used in	Х	Х	Х	Х	Х	Х	Х							
bridge construction.								-						
2.3.Develop theoretical														
probabilistic distribution				v	v	v	V	v	v					
models for in construction				X	Х	X	X	X	X					
used materials property														
Variation.														
2.4. Analysis about ageing														
construction material			v	v	v	v	v	v	v	v				
properties and its variation			^	^	~	~	^	~	^	^				
for existing structures														
2.5 Develop a probabilistic														
model for building accuracy														
and description of other														
"human factor" induced							х	х	х	х				
structural properties														
variation and their impact														
on load–carrying capacity.														

2.6.Comparison of resulting												
action and material												
resistance probabilistic												
modes using limit state												
method defined in							Х	Х	Х	Х	Х	Х
Eurocode, it will allow to												
determine existing bridge												
safety and robustness (with												
appropriate safety factors).												
3. Publications, Scopus		1			3							2
4. Conferences		1			3			2				2
5.PhD and Master theses	Х	Х	Х		Х	Х	Х	Х	Х		Х	Х

Project 3 Risk consideration for safe, effective and sustainable structures

Time frame the Core task 2 activities

	20	14		20	15			20	16		2017			
	Ш	IV	Ι	П	Ш	IV	I	П	Ш	IV	I	П	Ш	IV
1. Develop of method for														
localization of damage site														
and evaluation of damage														
size in various structural														
elements by using														
appropriate signal	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
processing techniques														
experimentally measured														
dynamic parameter														
changes.														
1.1. identification of														
damage in beam-type	Х	Х	Х	Х	Х									
structural elements														
1.2. identification of														
damage in plate-type				Х	Х	Х	Х	Х	Х					
structural elements														
1.3. identification damage														
in sandwich-type structural							Х	Х	Х	Х	Х	Х		
elements														
1.4. methodology for														
exploitation damage											v	v	v	V
identification in various											X	X	X	х
structural elements														
2. Development of new														
technologies for														
monitoring and diagnostics			v	v	v	v	v	v	v	v	v	v		
of aviation engines and			X	X	Х	X	X	X	X	X	X	X		
various elements of rotary														
machines.														
2.1. investigation of														
aviation structural element			v	v	v									
health monitoring and			^	~	Λ									
diagnostics														
2.2. experimental														
investigation of dynamics				х	х	х	х	х						
parameters of aviation				~	~	~	~	~						
structural elements														
2.3. exploitation damage														
identification in aviation						Х	Х	Х	Х	Х				
structural elements														
2.4. recommendation for														
health monitoring and										Х	Х	Х		
diagnostics of aviation														

structural elements														
3. Development of method for pre-stress loss														
estimation in pre-stressed											.,			
steel reinforced concrete							Х	Х	Х	Х	Х	Х	Х	х
structural elements.														
3.1. investigation of														
methods, based on analysis														
of loss of pre-stress in pre-							х	х	х	х				
stressed steel-reinforced							~	~	Λ	Λ				
concrete structural														
elements														
3.2. numerical modelling														
and simulations of pre-														
stressed steel-reinforced									Х	Х	Х	Х	Х	
concrete structural														
elements														
3.3. experimental														
estimation of dynamic											х	х	х	
parameters of pre-stressed											~	~	~	
steel-reinforced concrete														
3.4. method for evaluation														
of pre-stress loss in														
prestressed steel-												Х	Х	Х
reinforced concrete														
structural elements														
4. Publications, Scopus						2	1	1				1	1	
5. Conferences									1				1	
6. Supervision of doctoral	X	X	X	X	X	X	X	X	X	X	X	X	X	X
thesis and master's thesis														

Project 3 Risk consideration for safe, effective and sustainable structures

Time frame the Core task 3 activities

	2014			20	15			203	16		2017				
	1	2	1	2	3	4	1	2	3	4	1	2	3	4	
1. Development of design procedure for load-bearing elements from cross- laminated timber	x	x	x	x	x	x	x	x	x	х					
1.1.Datageneralizationfordevelopmentofdesignprocedureforload-bearingelementsfromcross-laminated	x	x	x												
1.2. Development of design procedure for load-bearing elements from cross- laminated timber			x	x	x	x	x	x							
1.3. Experimental testing of design procedure for load- bearing elements from cross-laminated timber				x	x	x	x	x	x	x					
2. Topology optimization for structure from cross- laminated timber and evaluation of it rational, from the point of view of it materials expenditure,							x	x	x	x	x	x	x	×	

parameters														
2.1. Model of behaviour for structure from cross- laminated timber							x	x	x	x				
2.2. Development of optimization algoritme for structure from cross- laminated timber							x	x	x	Х	x	x	x	x
2.3. Evaluation of it rational parameters for structure from cross-laminated timber							x	x	x	x	х	x	×	x
3. Development of load-bearing structure which consists from the main tensioned members and secondary cross- laminated timber members subjected to flecture							x	x	x	x	x	x	x	×
3.1. Development of Numerical model of the structure							x	x	x	x	х	x	x	x
3.2. Development of physical model of the structure											х	x	х	x
4. Conferences, papers		1	2											
5. Supervision of doctoral and masters thesis	x	x	x	x	x	x	X	x	x	x	x	x	Х	x
6. Publications, Scopus														