Project 6 Processing of metal surfaces to lower friction and wear

Time frame

	2	014	2015				2016				2017			
	Ш	IV	I	П	Ш	IV	1	Ш	Ш	IV	I	П	Ш	IV
1. To characterize the metal														
surface and determine the best	Х	Χ	Х	Х	Х	Χ								
test methods														
1.1. Develop a method for the														
preparation of the metal surface of														
the samples - cutting, rough	Х	Χ		Х	Х									
polishing, fine polishing														
1.2. Develop a method for full														
sample surface analysis (optical														
microscopy, atomic force			Х	х	х	Х								
microscopy, scanning electron			^	^	^	Λ								
microscopy, profilometry)														
2. To develop a test apparatus to														
simulates an ice track and a														
climate simulator to test metal	x	Х	х	x	х	Х								
surface friction and wear	^		^	^	^	Λ								
reduction														
2.1. Develop testing apparatus														
(simulation of bobsled track) and														
software to detect movement of the	Х	Х												
sample at a certain angle														
2.2. Develop a climate simulator														
which can be adjusted to work at		Х	Х	Х	Х									
low temperatures														
2.3. Develop a method for														
measuring slip under laboratory	Х	Х	Χ	Х	Х	1								
conditions														
3. To modify the metal surface,														
and calculate the new slip					х	Х	х	х	х		х	Х		
determined by any modifications					^	^	^	^	^		^	^		
made														
3.1. Develop a method for metal														
surface modification to increase slip					Х	Χ	Х	Х	Х		Х			
(surface roughness, hardness,					^	,		^			,			
chemical modification)														
3.2. Optimise metal surface for											Х	1		
increased gliding on ice (report)								-					-	
4. Determine the relationship of											.,	,,	_	
gliding between the metal											Х	Х	1	
surfaces and ice (report)													-	
5. To develop methods for the optimisation for the gliding						Х	Х		Х		х	Х	Х	Х
surface with real track conditions						۸	_ ^		^		^	^	_ ^	٨
5.1. Develop a method for														
determining the slip under real						Χ	Х				Х	1		
track conditions, in comparison						^	_ ^				_ ^	1		
track conditions, in comparison	<u> </u>			<u> </u>	<u> </u>			<u> </u>			<u> </u>	l	1	

with laboratory equipment (report)													
5.2. Develop a method for surface modification of a larger metal sample									Х	X	X		
5.3. Make a modification recommendation for the metal surface to improve gliding in track conditions (report)												x	1
6. Publications						1							1
7. Conference					1				1			1	
8. Science publications									1				
9. Seminars													1
10.Master's thesis	Χ	Χ	Х	Х	Х	Χ	Х	Х	Х	Χ	Χ	Χ	Х
11. Patent results in Latvia													1
12. New methods for exploitation													1