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Abstract 

Peridynamics is a non-local formulation of continuum mechanics that doesn’t rely on spatial derivatives, therefore peridynamics is 

well suited for crack and failure modeling. A body is discretized in a finite number of particles and each particle connects to other 

particles within a range called a material’s horizon. In this study we ran fifty simulations with different horizon size and particle 

spacing combinations to see how they influence maximum displacement. Values from simulations are compared with values 

calculated using Hooke’s law. The results show that the horizon size of three particle spacings gives the best results. However, 

simulations with horizon sizes non-integer times larger than particle spacing show unexpectedly good results. 
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1. Introduction 

Peridynamic theory [1] is a nonlocal formulation of continuum mechanics that was created to handle materials’ 

discontinuities such as cracks. Classical theory relies on spatial derivatives to represent the relative displacement and 

force between two particles and partial derivatives with respect to the spatial coordinates are undefined along the 

discontinuities. In contrast, peridynamics (PD) uses integral equations that do not require spatial derivatives. PD was 

first introduced in the bond-based form [2], in which Poisson’s ratio is limited to 0.25. In 2007 Silling et al. [3] 

introduced the state-based formulation that eliminated this restriction. A PD body is discretized in a number of 

particles each of which describes some amount of volume and the side of a particle is commonly called a lattice. The 

results depend on particle positions, particle spacing h , and material’s horizon δ  (see chapter 2 for PD theory). Most 

common are square lattices for two-dimensional analysis and cubic lattices for three-dimensional analysis both with 
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uniform spacing in all directions [5, 9–12] . PD have been used successfully to predict damage and failure [4–8], 

however, few articles deal with the mesh spacing’s and horizon’s influence on the results.  

Given a domain of m discretized particles with h  being the distance between two neighboring particles, Bobaru et 

al. defined three convergence types in [13]: 

 h  – convergence, where δ is fixed as 0h ;  

 h)(   – convergence, where δ  decreases and h  decreases, but the ratio between them stays the same; 

 δ  – convergence, where 0δ  with a fixed h .  

Yaghoobi and Chorzepa considered h)(   and δ convergence types for a two-dimensional mesh in [6] and found that 

the results are the most accurate with 3.015δ/h  . In [4] Silling and Askari used four mesh spacings to show how 

crack growth changes based on the mesh spacing in a two-dimensional plate. Study [14] showed that in two-

dimensional plate with a crack the difference in displacements between PD and finite-element method (FEM) shrinks 

as δ  decreases. Henke and Shanbhag [15] found that cubic mesh with 4δ/h   gives better results than meshes with 

lower δ/h value, however, centroidal Voronoi tessellation mesh gives similar or better results. In [16] δ  convergence 

and h convergence studies were performed for unidirectional composites. Previously mentioned studies (with the 

exception of [15]) used two-dimensional models for their analysis. 

For this study, we simulated a tensile and a compression test of glass-fiber coupons in three-dimensions. Simulated 

displacement values are compared with displacement values obtained from Hooke’s law and percent errors are 

calculated. We use different h  and δ values to study five cases of δ  and five cases of h)(  convergence.  

2. Peridynamic theory  

In PD an undeformed body consists of an infinite number of particles identified by their coordinates, (i)x . Each 

particle is associated with some amount of volume (i)V . These particles undergo displacement (i)u  and their position 

in the deformed configuration is described by the position vector (i)y . Each particle has a range 0δ  called the 

“horizon”, named so because the particle can’t “see” past it. In three-dimensional space particles within a sphere, with 

a radius of δ  and centered at particle (i)x , are called the family of (i)x , 
( i)

Hx . An example of peridynamic body is 

shown in Fig. 1. Particle (i)x  interacts through bonds (i)(j) xx   with all particles in its family and the bond properties 

depend on material models. The force density vector, which can be viewed as the force exerted by particle (i)x  on the 

particle (j)x , is then (i)(j)t . Similarly particle (i)x  is influenced by (j)x  through the force density vector (j)(i)t . These 

forces are determined jointly by the collective deformation of neighborhoods
( i)

Hx  and 
( j)

Hx  throughout the model. 

Force density vectors (i)(j)t  where ) ..., 2, 1,(j   associated with particle (i)x  are stored in infinite-dimensional array, 

called a force vector state, T  (1) and the relative position vectors in the deformed configuration )( (i)(j) yy   where 

) ..., 2, 1,(j   can be stored in an similar array called a deformation vector state, Y (2). 
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Force vector state for particle (i)x  depends on the relative displacements between that particle and all other particles 

within its horizon, therefore force vector state can also be written as 

)).,((),( )( tt (i)i xYTxT   
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Fig. 1. Peridynamic body before deformation (left) and after deformation (right). 

Force density vector (i)(j)t  and position vector )( (i)(j) yy   between two particles (i)x  and (j)x  can be expressed as  

(i)(j)(i)(i)(j)(i)(j)(i)(j) tt xxxTxxuut  ),(),,(
 

(i)(j)(i)(i)(j) t xxxYyy  ),()(  

The PD equation of motion in integral form is: 

  ),(),(),(),()( )()()()()()()()()( tdHtttρ i
H

jijijiii xbxxxTxxxTxux   ,  

where )( (i)ρ x - density of a particle, ),( t(i)xu  - acceleration vector,  ),( t(i)xb  - body load density vector. Damage and 

failure in PD is modeled through breaking of bonds. When a bond is broken the load it carried is redistributed among 

the unbroken bonds, leading to progressive damage and failure. The simplest damage model is the critical stretch i.e. 

a bond is irreversibly broken when it is stretched past some value. We didn’t use any damage models for this study so 

they won’t be discussed further, but [4] describes them in more detail. In this paper we use isotropic linear peridynamic 

solid (LPS) material model, which is the nonlocal analogue to a classical linear elastic isotropic material model, 

additional details are given in [3]. The isotropic LPS model has a force scalar state: 

d
eω

m

15μ
xω

m

3Κ
t 


  

where t - force scalar state, K - bulk modulus, m - weighted volume, x - reference position scalar state, μ - shear 

modulus, ω - influence function (equal to 1 for isotropic materials), 
d

e - deviatoric part of extension scalar state. 

3. Specimens and simulations 

3.1. Specimens 

One tensile and one compression specimen was randomly selected from a batch of tested four-layer twintex 

specimens made from polypropylene glass comingled fabric using vacuum consolidation. They were incrementally 

loaded till failure either in tension or compression. Applied load was measured by testing machine itself, but strain 

was measured by IMETRUM digital image correlation (DIC) system. Tensile test was done according to ASTM D 

3039 standard, tensile modulus of elasticity was calculated between 0.001 and 0.003 strain, Poison’s ratio was taken 

as average between values at 20% and 30% of failure load. Compression test was done according to ASTM D 3410 

standard and compression modulus of elasticity was calculated between 0.001 and 0.003 strain. Poisson’s ratio for 

compression simulation was taken from the tensile test. For simplicity, the tensile specimen will hereafter be called 
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specimen T and the compression specimen will be called specimen C. Specimen width, thickness, cross-sectional area, 

failure load, and other measurements are given in table 1, since specimens were clamped at both ends the length values 

in table 1. show specimens’ length between these two clamps. 

Table 1. Specimen data from tensile and compression test. 

Specimen Thickness 

(mm) 
Width 

(mm) 

Length 

(mm) 

Failure load 

(N) 

Modulus of 

elasticity (GPa) 

Poisson's 

ratio 

Density 

(kg/m3) 

T 2.10 15.73 100.00 8598.35 12.13 0.36 1240.00 

C 2.00 10.57 10.00 3209.58 13.91 0.36 1240.00 

3.2. Discretization 

To run a simulation, it is necessary to discretize a body in a finite number of particles. The distance between two 

neighboring particles is equal to the lattice in the direction of the neighboring particle because all particles have the 

same size. Specimens’ side length ratio is not an integer number, so it was impossible to fit an integer number of cubic 

particles in a specimens’ volume. To address this, we calculated the largest lattice by dividing specimens’ thickness 

into an integer number of particles, then reduced the calculated lattice size to fit an integer number of particles in 

specimens’ length and width. Five different mesh densities are considered here by making the largest lattices equal to 

thickness divided by either one two, three, four or five. The lowest limit of thickness division was one, so a two 

dimensional model for 10 simulations, and five was chosen as the highest limit, as finer meshes increased 

computational cost too much. Because of this approach, the particles weren’t a perfect cube, with the largest difference 

between two sides of a particle being 6.37% for specimen T and 11.92% for specimen C.  

To study δ convergence, the horizon has to shrink as the spacing between the particles remains constant. In a 

discretized body δ  must not be lower than spacing between the particles, otherwise a particle won’t be connected to 

other particles. For this study, we considered horizons with sizes from one largest particle spacing to five largest 

particle spacings, larger sizes weren’t considered due to increasing computational cost. It is recommended in [17] to 

increase the horizon by some small number to avoid excluding any particles from a family due to a floating point 

error, so we increased all horizons by one percent. A total of 25 different cases for each specimen are considered here. 

For clarity, cases will be labeled as Lmn, where L is the name of the specimen (T or C), m is the number of particles 

in specimen’s thickness (1 to 5) and n is the size of the horizon in lattices (1 to 5). Particle and horizon sizes are given 

in Table 2. 

Table 2. Particle and horizon size for all considered cases (cases with a * have an increased horizon, see chapter 3.3). 

Case δ (m) hx (m) hy (m) hz (m) Case δ (m) hx (m) hy (m) hz (m) 

T1n  (1 ... 5)×1.01×hy 0.002097 0.0021 0.001966 
C11* 0.002692 0.002 0.002 0.001762 

C1n (2 ... 5)×1.01×hy 0.002 0.002 0.001762 

T2n (1 ... 5)×1.01×hy 0.001048 0.00105 0.001049 
C21* 0.001428 0.001 0.001 0.000961 

C2n (2 ... 5)×1.01×hy 0.001 0.001 0.000961 

T3n (1 ... 5)×1.01×hy 0.000699 0.0007 0.000684 
C31* 0.000949 0.000662 0.000667 0.000661 

C3n (2 ... 5)×1.01×hy 0.000662 0.000667 0.000661 

T4n (1 ... 5)×1.01×hy 0.000524 0.000525 0.000524 
C41* 0.000714 0.0005 0.0005 0.00048 

C4n (2 ... 5)×1.01×hy 0.0005 0.0005 0.00048 

T5n (1 ... 5)×1.01×hy 0.000419 0.00042 0.000414 
C51* 0.000573 0.0004 0.0004 0.000391 

C5n (2 ... 5)×1.01×hy 0.0004 0.0004 0.000391 
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3.3. Loads, boundary conditions and simulations  

In PD loads and boundary conditions are prescribed to some amount of volume. Because of this, three rows of 

particles were added to each end of both specimens bringing specimen’s T total length to 100mm+ x6h  and specimen’s 

C total length to 10 mm+ x6h , these added rows will be called boundary regions. The boundary region at one end was 

constrained in all directions, but at the other end the only in y  and z  directions and the load was applied in the x  

direction. Since load is applied to some volume it has to be force per unit volume. Table 3. shows the number of 

particles in a single boundary region, the volume of a single particle, and the applied load per unit volume per particle. 

Maximum applied load is showed in table 2. 

Table 3. Number of particles with a prescribed boundary condition at one end, single particle’s volume and the load per unit volume applied 

to a single particle. 

Case Number of particles 

in a single boundary 

region 

Particle's 

volume 

(m3) 

Load applied to a 

single particle 

(N/m3) 

Case Number of particles 

in a single boundary 

region 

Particle's 

volume 

(m3) 

Load applied to a 

single particle 

(N/m3) 

T1n 24 8.66e-9 4.14e+10 C1n 18 7.05e-9 -2.53e+10 

T2n 90 1.15e-9 8.28e+10 C2n 66 9.61e-10 -5.06e+10 

T3n 207 3.35e-10 1.24e+11 C3n 144 2.92e-10 -7.65e+10 

T4n 360 1.44e-10 1.66e+11 C4n 264 1.20e-10 -1.01e+11 

T5n 570 7.29e-11 2.07e+11 C5n 405 6.26e-11 -1.27e+11 

Simulations were done with Peridigm software [17]. Specimens were modeled using state-based elastic material 

model described in [3] with the material properties given in Table 1. Quasi-static solver applied the load incrementally 

in 50 load steps and the tolerance criteria was set to 1.0e-3. Maximum displacement values from PD solution were 

compared to values calculated using Hooke’s law (3).  

AE

F
ld    (3) 

, where d - absolute displacement, l - specimen’s length, F - applied load, A - cross-sectional area, E - modulus of 

elasticity. The comparison was done using percent error. 

Simulations of five compression cases with 1hδ   (Cm1) wouldn’t converge when 50 loads steps were used, nor 

when the number of load steps was increased to 1e+6. In these cases a particle is connected only to its immediate 

neighbors. The convergence doesn’t seem to be dependent on the particle spacing, because this issue occurred with 

all mesh sizes. We decided to increase the horizon for these five cases to include not only the immediate neighbors, 

but also the next layer of particles. This increase changed δ from 1hδ   to about 1.4hδ  , but we didn’t change the 

case naming scheme, two-dimensional case is illustrated in fig. 2 and table 2 shows the increased horizons.  

4. Results and discussion 

In this study we ran 50 simulations with parameters described in tables 1, 2, and 3. Percent errors between maximum 

displacements from simulations and displacements calculated using (3) were used to study five cases of δ  

convergence and five cases of h)(   convergence. Displacement values from Hooke’s law (3) at maximum load were 

2.14e-3 m for specimen T and -1.09e-4 m for specimen C. Maximum displacement values from simulations are shown 

in table 4 and percent errors in table 5. T53 is the most accurate simulation case in tension and C43 is the most accurate 

in compression. The two-dimensional cases (T1n and C1n) are less accurate than three-dimensional cases, when δ

sizes with similar ratios to h  are compared. It can be seen that every simulation underestimated the displacement when 

compared to Hooke’s law in both tension and compression. Generally coarser mesh results in larger difference from 

Hooke’s law, but it also varies with changing horizon, differences are better illustrated in the following figures. In the 

following figures values calculated using Hooke’s law are denoted HL. 
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Fig. 2. Initial and updated horizon sizes for a two-dimensional case. 

Error dependence on changes in the horizon size δ as the lattice size stays constant ( δ  convergence) is shown in 

Fig. 4. In tension, the two-dimensional cases (T1n) show the worst results and, as expected, the results from three-

dimensional cases increase in accuracy as particle density increases. In compression two-dimensional cases (C1n) still 

show the worst results, but the accuracy no longer increases with increasing particle density. The C43 case shows the 

lowest error, followed by C31case, and only then followed by C53 case. This shows that in compression finer mesh 

doesn’t always lead to more accurate results. The best results in tension are obtained with the horizon size three times 

larger than the lattice and deviations only leads to less accurate results. Compression simulations with 1hδ  wouldn’t 

converge, so the horizon size for these cases was increased to about 1.4hδ  , which lead to unexpected decrease in 

calculated percent errors. For C1n and C2n cases this horizon size showed the most accurate results, for C3n – C5n 

cases the accuracy was within 5% from 3hδ   cases. We don’t know why there was such an increase, but it might 

indicate that better accuracy can be achieved by using horizon sizes that are not equal to lattice length multiplied by 

some integer number. The graphs of compression cases intersect, which means that, for different horizon sizes, 

different mesh densities are the most accurate. This might be caused by the fact that particles aren’t completely cubic, 

but it should be additionally tested. 

Table 4. Maximum displacement values (m) for all simulation cases. 

δ  

Specimen T Specimen C 

h  h  

1 2 3 4 5 1 2 3 4 5 

1 5.67e-04 8.07e-04 8.62e-04 9.02e-04 9.19e-04 -1.72e-05 -2.80e-05 -3.02e-05 -2.94e-05 -2.80e-05 

2 6.17e-04 1.25e-03 1.40e-03 1.54e-03 1.58e-03 -1.13e-05 -2.08e-05 -2.40e-05 -2.43e-05 -2.35e-05 

3 9.32e-04 1.35e-03 1.72e-03 2.00e-03 2.07e-03 -1.53e-05 -2.15e-05 -2.91e-05 -3.11e-05 -3.01e-05 

4 8.10e-04 1.18e-03 1.48e-03 1.63e-03 1.75e-03 -1.35e-05 -2.07e-05 -2.31e-05 -2.84e-05 -2.57e-05 

5 6.78e-04 1.10e-03 1.38e-03 1.49e-03 1.74e-03 -1.21e-05 -1.97e-05 -2.10e-05 -2.54e-05 -2.60e-05 
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Fig. 4. Percent error vs. horizon size ( δ  convergence) graphs for tension specimen (left) and compression specimen (right). 

 

 

Fig. 5. Percent error vs. particle spacing ( h)(  convergence) graphs for tension specimen (left) and compression specimen (right). 

Table 5. Percent errors between maximum displacements from simulations and Hooke’s law. 

δ  

Specimen T Specimen C 

h  h  

1 2 3 4 5 1 2 3 4 5 

1 -73.57% -62.37% -59.85% -57.99% -57.15% -47.34% -14.12% -7.18% -9.76% -13.98% 

2 -71.23% -41.68% -34.58% -28.37% -26.41% -65.32% -36.25% -26.45% -25.70% -28.14% 

3 -56.59% -36.95% -19.80% -6.68% -3.76% -53.10% -33.97% -10.83% -4.59% -7.34% 

4 -62.27% -45.01% -30.80% -24.13% -18.54% -58.80% -36.69% -29.31% -13.00% -21.18% 

5 -68.43% -48.54% -35.89% -30.65% -19.02% -62.87% -39.71% -35.49% -21.96% -20.26% 

Fig. 5 shows h)(  convergence, namely, how percent error changes as the horizon size  and the lattice size h  

decreases while the ratio between them stays the same. For tension specimens errors decreases with a decrease in 

lattice size. Errors are largest when particles are only connected to their immediate neighbors 1δ/h   and the most 

accurate when 3δ/h  . The results for compression cases are less clear. Since the simulations with 1δ/h   wouldn’t 

converge,  was increased to about 1.4h (these cases are still named Cm1). The results show that in compression the 

simulations with 1.4δ/h   are the most accurate for larger lattices e.g. 3 - 1h  , but as mesh density increases 

further, cases with 3δ/h   become more accurate. However, cases with 1.4δ/h   still show better results than cases 

with other ratios. 

5. Conclusions 

In this paper we analyze the influence of the horizon size and mesh spacing on the results of peridynamic 

simulations. Twenty five tension and twenty five compression cases with different mesh spacing and horizon sizes 

are considered. Glass fiber coupon tests were used to determine input values for simulations and Peridigm software 

was used to run the simulations. The results showed that two-dimensional cases are less accurate than three-

dimensional cases if similar horizon size to lattice size ratio is considered.  

δ  convergence study showed that most accurate results are obtained when the horizon size is three times larger 

than the lattice and further increase in the horizon size leads to decrease in accuracy. Five compression cases with a 

horizon size of 1.4h showed similar or better results than cases with larger horizon sizes. This could indicate that more 
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accurate results can be obtained using horizon sizes that are not equal to the lattice size multiplied by some integer 

number, however, additional studies are required. 

h)(  convergence study showed that in tension even with changing lattice size the horizon to lattice size ratio of 

three gives the most accurate results. In compression the horizon size of 1.4h  is the most accurate for higher particle 

spacing, but the horizon size of three lattices gives more accurate results when particle spacing decreases. 

Additionally lines in δ  and h)(   convergence graphs intersected, which shows that a constant change in the 

horizon size or lattice length doesn’t change the accuracy by constant amount. This, however, could be caused by the 

fact that particles weren’t perfect cubes. 
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