| Work stages:    | Activity 1                                    |  |  |  |  |
|-----------------|-----------------------------------------------|--|--|--|--|
| Milestone:      | 1                                             |  |  |  |  |
| Milestone name: | Curing kinetic models for the selected resins |  |  |  |  |

Three types of resins widely used in Latvia for pultrusion profiles have been chosen:

- polyester resin C-L ISO 112G,
- epoxy resin RESOLTECH 1401+1407+AC140,

Heating rates

• 2 °C/min 5 °C/min

10 °C/min

200

150 Temperature T. °C 250

vinyl ester resin CRYSTIC VE 676-03.

To define their curing kinetic parameters, 9 DSC scans have been executed by Mettler Toledo on samples heated from 20°C to 250°C at rates of 2, 5, 10 °C/min. Using these experimental results, different curing kinetic models for the selected resins have been built and their accuracy have been estimated.



2.5

2

1.5

0.5 0

0

50

Normalized heat flow q, W/g

## Polyester resin C-L ISO 112G

| Model                                 | Parameters |        |                      |               |                              |               | $\sigma_r$ , |
|---------------------------------------|------------|--------|----------------------|---------------|------------------------------|---------------|--------------|
|                                       | п          | т      | $K_1, s^{-1}$        | $E_1$ , J/mol | $K_{2}^{}$ , s <sup>-1</sup> | $E_2$ , J/mol | %            |
| First order                           | -          | -      | -                    | -             | -                            | -             | 11.1         |
| <i>n</i> -th order                    | 1.88       | -      | -                    | -             | -                            | -             | 9.1          |
| <i>n</i> -th order with autocatalysis | 1.88       | -      | -                    | -             | 0                            | -             | 9.1          |
| Prout-Tompkins                        | 0.39       | 1.08   | -                    | -             | -                            | -             | 3.5          |
| Kamal-Sourour                         | 1.27       | 0.0011 | 2.6·10 <sup>13</sup> | 116769        | $1.2 \cdot 10^{12}$          | 200000        | 3.9          |

Parameters of curing kinetic models

## Epoxy resin RESOLTECH 1401+1407+AC140

| Model                                 | Parameters |       |                         |               |                     | $\sigma_r$ ,  |     |
|---------------------------------------|------------|-------|-------------------------|---------------|---------------------|---------------|-----|
|                                       | п          | т     | $K_1,  \mathrm{s}^{-1}$ | $E_1$ , J/mol | $K_2,  { m s}^{-1}$ | $E_2$ , J/mol | %   |
| First order                           | -          | -     | -                       | -             | -                   | -             | 2.1 |
| <i>n</i> -th order                    | 0.96       | -     | -                       | -             | -                   | -             | 2.1 |
| <i>n</i> -th order with autocatalysis | 0.98       | -     | -                       | -             | 0.03                | -             | 2.1 |
| Prout-Tompkins                        | 0.87       | 0.05  | -                       | -             | -                   | -             | 2.0 |
| Kamal-Sourour                         | 0.79       | 0.001 | $3.03 \cdot 10^{11}$    | 104845        | 12000               | 2000000       | 2.1 |

## Vinyl ester resin CRYSTIC VE 676-03

| Model                                 | Parameters |      |                      |               |                      |               | $\sigma_r$ , |
|---------------------------------------|------------|------|----------------------|---------------|----------------------|---------------|--------------|
|                                       | п          | т    | $K_1, s^{-1}$        | $E_1$ , J/mol | $K_2, s^{-1}$        | $E_2$ , J/mol | %            |
| First order                           | -          | -    | -                    | -             | -                    | -             | 9.6          |
| <i>n</i> -th order                    | 1.23       | -    | -                    | -             | -                    | -             | 9.5          |
| <i>n</i> -th order with autocatalysis | 1.23       | -    | -                    | -             | 0                    | -             | 9.5          |
| Prout-Tompkins                        | 0.10       | 0.41 | -                    | -             | -                    | -             | 3.8          |
| Kamal-Sourour                         | 1.63       | 1.01 | $2.98 \cdot 10^{11}$ | 110865        | $6.10 \cdot 10^{11}$ | 93241         | 2.2          |



100



INVESTING ΙN YOUR FUTURE