

TECHNOLOGIECAMPUS OOSTENDE

INTRODUCTION to

INNOVATIVE TEACHING METHODS & ELECTRONIC ENVIRONMENTS

Erasmus⁺ Project "Physics" October 28th, 2016, KULeuven – Ostend Renaat De Craemer, Joan Peuteman, Anik Janssens

Table of contents

Introduction

Model of a powerful learning environment

Introduction

Educational vision of BaMa concept:

> new approach:

- student oriented
- interactive
- > new methods:
 - teaching
 - learning

Introduction

- Crucial element of BaMa concept:
 > digital teaching & learning:
 - - latest ICT technology
 - digital learning environment 🖝 distance learning

Introduction

Conventional didactics

process of knowledge transmission (passive)instructor-centred (instructor transmits)

Û

Digital didactics

process of knowledge construction (active)student-centred (instructor supports)

⇒ role of teacher is changed!

Powerful learning environment

- Didactic model:
 - different components
 - mutual influence
 - ➢ in perfect harmony!
- Basis for demo-course "Applied Physics"

Powerful learning environment

KU LEUVEN

Learning outcomes

• Definition:

> descriptions of what the student is expected:

- to know
- to be able to perform
- ➤ related to:
 - knowledge
 - skills
 - behaviour

Learning outcomes

- Important for:
 - teacher (design of learning environment)
 - Student (management of learning activities)
- Digital learning environment is useful tool
 clear and transparent communication

Student characteristics

- Student is responsible for own learning!
- Typical student characteristics:
 - prior knowledge
 - learning level
 - motivation and interests

Prior knowledge

- Determines the new information which student can process himself
- In E-learning related to:
 - subject content
 - ICT field
- Important!
 - > adjusted learning outcomes
 - activation of prior knowledge

Learning level

Teaching matter in line with learning level

• Important!

Motivation and interests

• Nature of motivation: Intrinsic motivation within student and teaching matter **Extrinsic motivation** outside student and teaching matter

Motivation and interests

• Important!

- learning fits with students' needs and requirements
- Digital learning environment is useful tool
 differentiation in flexible way

Assessment

• Definition:

- determination and evaluation of acquired learning outcomes
- consistent with didactic methods and learning activities

Assessment

Many aspects:
Moment (when?)
Type (what?)
Objective (how?)
Evaluator (who?)
Feedback

Moment (when?)

• Three main moments:

- First evaluation: after initial phase
- > mid-term evaluation: intermediate
- ➢ final evaluation: at the end

Type (what?)

- Two main types:
 - process evaluation:
 - focus on learning process
 - questions: to what extent? in which way?
 - product evaluation:
 - focus on result of learning process

Objective (how?)

• Two main objectives:

- Formative evaluation:
 - focus on progress of learning process
 - intermediate and diagnostic
 - feedback!
- Summative evaluation:
 - final assessment

Evaluator (who?)

- Several evaluators:
 - teaching team
 - externals from profession field
 - Fellow students ('peerassessment')
 - > student himself ('selfassessment')

 \Rightarrow diverse character of evaluation process

Feedback

- Characteristics:
 - Inked to formative evaluation
 - constructive
 - ➤ encouraging
 - > guiding (where necessary)

Feedback

- Digital learning environment is useful tool
 - Follow-up independently of:
 - location
 - time
 - > automatic and individual feedback
 - learning tips
 - references to interesting learning materials
 - > self-evaluation tools \Rightarrow practice on own tempo

KU LEUVEN

Learning processes

Components:
 > subject contents
 > learning activities
 > student support

Subject contents

- Exponential growth of knowledge ⇒ inexhaustible supply of subject contents
- Task of teacher:
 - > well-informed selection
 - > dynamic subject contents

Subject contents

- Digital learning environment is useful tool
 - > digital contents can be:
 - easily changed \Rightarrow adapted
 - saved for long periods of time \Rightarrow frequently re-used

Learning activities

• Objective: achieving learning outcomes

Many variation in learning activities:

- discussions
- ➤ assignments
- ➤ experiments
- project work

Learning activities

- "blended learning":
 - ➢ in general, combination of different:
 - modes of teaching
 - styles of learning
 - concrete, combination of:
 - traditional face-to-face instruction
 - computer mediated instruction

Student support

 Many variation in support of students during learning activities

- For example: solving complex task in digital learning environment: support towards:
 - content of task
 - strategies for solving a problem
 - handling of technology of the environment

Student support

Instructional scaffolding": support: tailored to needs of student \succ fading: autonomy and self-regulation of student *I* ſ support of teacher \mathbf{Y} (dynamic and adaptive!)

TECHNOLOGIECAMPUS OOSTENDE

THANKS!

ANY QUESTIONS?

Erasmus⁺ Project "Physics" October 28th, 2016, KULeuven – Ostend Renaat De Craemer, Joan Peuteman, Anik Janssens

