

ПРОВОДЯЩИЕ НАНОКОМПОЗИТЫ МЕТАЛЛ-ПОЛУПРОВОДНИК-ДИЭЛЕКТРИК

Проф. Федотов А.К. *Кафедра энергофизики* (Белорусский государственный университет)

Ключевые соавторы

J. Fedotova, Research Institute for Nuclear Problems, BSU, Minsk, Belarus P.V. Zukowski, Lublin Technical University, Lublin, Poland Yu.E. Kalinin, Voronezh State Technical University, Voronezh, Russia

План презентации

- 1. Постановка проблемы и основные определения
 - Мотивация
 - Основные определение
 - Композиты металл-диэлектрик
- 2. Технологии получения композиционных материалов
 - Методы получения гранулированных нанокомпозитов (НКМ)
- 3. Структура наногранулированных композиционных материалов
 - Электронная микроскопия высокого разрешения
 - Скнирующая электронная микроскопия
 - Электронная дифракция
 - Рентгеновская дифракция и др.

План презентации

- 4. Электропроводность наногранулированных композиционных материалов (НКМ) на постоянном токе
 - Зависимость от объемного соотношения компонент
 - Влияние матрицы и наполнителя на проводимость НКМ
 - Влияние температуры на электореперенос в НКМ
 - Модели электропереноса в НКМ
- 5. Электропроводность НКМ на переменном токе
 - Основные экспериментальные результаты
 - Основные модели электропереноса на переменном токе
 - Возможные применения
- 6. TECONASS TEmplate-assisted COmposite NAnostructures on Semiconducting Substrates

1. Постановка проблемы и основные определения Мотивация изучения нанокомпозитов

Нанокомпозиты, содержащие наночастицы на основе сплава Co-Fe, являются хорошими кандидатами для потенциальных применений:

- Магнитосенсоры
- Электротехнические компоненты
- Эффект «отрицательной емкости»
- Спинтронные приборы
- Широкая область удельного электрососпротивления
- ГМР/ТМР эффекты
- Магнитомягкие свойства (для сред памяти)
- Низкие потери на вихревые токи
- Высокая способность экранирования СВЧ излучения

1. Постановка проблемы и основные определения Основные определения

Гетерогенная среда – неоднородная система, состоящая из однороных частей (фаз), отделенных друг от друга поверхностями раздела.

1. Постановка проблемы и основные определения Основные определения

Гетерогенная среда – неоднородная система, состоящая из однороных частей (фаз), отделенных друг от друга поверхностями раздела.

Бинарная гетерогенная среда — гетерогенная система, состоящая из двух фаз.

1. Постановка проблемы и основные определения Основные определения

Гетерогенная среда – неоднородная система, состоящая из однороных частей (фаз), отделенных друг от друга поверхностями раздела.

Бинарная гетерогенная среда — гетерогенная система, состоящая из двух фаз.

1. Постановка проблемы и основные определения Основные определения

Под *микроскопически неоднородными средами* (системами) понимают такие среды, *характерный размер неоднородности* которых намного больше любых *характерных макроскопических длин* (корреляционных параметров), определяющих физические явления.

1. Постановка проблемы и основные определения Основные определения

Под *макроскопически неоднородными средами* (системами) понимают такие среды, *характерный размер неоднородности* которых намного больше любых *характерных макроскопических длин* (корреляционных параметров), определяющих физические явления.

Например, в случае описания электропроводности, среда считается неоднородной, если размер неоднородностей намного больше характерных **длин свободного пробега** носителей заряда в фазах.

1. Постановка проблемы и основные определения Композиты металл-диэлектрик

2. Технологии получения композиционных материалов Методы получения гранулированных нанокомпозитов

Виды КМ:

- Композиты металл-диэлектрик
- Полимерные композиты
- Керамики
- Композиты металл-металл
- Композиты металл-полупроводник
- □ <mark>И</mark> т.п.

2. Технологии получения композиционных материалов Методы получения гранулированных нанокомпозитов

Основными КМ, используемыми в электронике, являются *керамические* и *полимерные композиты*, которые отличаются наибольшим разнообразием по технологии изготовления, структуре и свойствам.

2. Технологии получения композиционных материалов Методы получения гранулированных нанокомпозитов

Кера	амические	электр	опров	зодящи	е композ	ИТЫ	
чаще	всего	получ	ают	путем	спека	спекания	
спрессованных		порошковых		вых с	смесей	ИЗ	
диэлектриков		И	частиц		проводящих		
напол	нителей.						

2. Технологии получения композиционных материалов Методы получения гранулированных нанокомпозитов

Полимерные КМ получают по следующим технологиям:

- смешивание порошков;
- холодная экструзия;
- смешивание в расплаве или растворе полимера;
- полимеризационное наполнение;
- химическое и электрохимическое наполнение пористых полимеров;
- наногибридные технологии.

2. Технологии получения композиционных материалов Методы получения гранулированных нанокомпозитов

Пленочные наногранулярные КМ металл-диэлектрик получают по следующим технологиям:

• методы термического и термохимического осаждения из газовой фазы

2. Технологии получения композиционных материалов Методы получения гранулированных нанокомпозитов

Пленочные наногранулярные КМ металл-диэлектрик получают по следующим технологиям:

• методы термического и термохимического осаждения из газовой фазы

Главные достоинства метода:

- возможность осаждения диэлектрических слоев и
- большой диапазон скоростей осаждения.

2. Технологии получения композиционных материалов Методы получения гранулированных нанокомпозитов

Пленочные наногранулярные КМ металл-диэлектрик получают по следующим технологиям:

 методы плазмохимического осаждения из газовой фазы (магнетронное, электроннолучевое, лазерное распыление)

2. Технологии получения композиционных материалов Методы получения гранулированных нанокомпозитов

Пленочные НКМ металл-диэлектрик получают по следующим технологиям:

• метод ионно-плазменное осаждения из газовой фазы

2. Технологии получения композиционных материалов Методы получения гранулированных нанокомпозитов

Пленочные наногранулярные КМ металл-диэлектрик получают по следующим технологиям:

• метод ионно-плазменно осаждения из газовой фазы

Схема распределения концентрации элементов, составляющих мишень, на поверхности подложки

3. Структура наногранулированных композиционных материалов Электронная микроскопия высокого разрешения Скнирующая электронная микроскопия Электронная дифракция Рентгеновская дифракция и др.

Co-funded by the Erasmus+ Programme of the European Union

Электронная микроскопия высокого разрешения, СЭМ, ЭД

Микроструктура композитов $(Co_{41}Fe_{39}B_{20})_{56.2}(SiO_2)_{43.8}$, напыленных на неподвижную водоохлаждаемую подложку

Co-funded by the Erasmus+ Programme of the European Union

Атомно-силовая микроскопия

Co-funded by the Erasmus+ Programme of the European Union

Co-funded by the Erasmus+ Programme of the European Union

Изображение в растровом микроскопе атомного разрешения нанокомпозита металлдиэлектрик **FeCoZr-Al₂O₃** со структурой металлических частиц наполнителя типа «ядрооболочка» за счет окисления наночастиц

4. Электропроводность наногранулированных композиционных материалов (НКМ) на постоянном токе

- Зависимость от объемного соотношения компонент
- Влияние матрицы и наполнителя на проводимость НКМ
- Модели прыжкового электропереноса
- Модели туннелирования

Co-funded by the Erasmus+ Programme of the European Union

Зависимость от объемного соотношения компонент В случае гомогенной (однородной), изотропной среды векторы плотности электрического тока **ј** и напряженности электрического поля **E**, связаны друг с другом выражением:

$$\mathbf{j} = \mathbf{\sigma} \mathbf{E} \tag{1.1}$$

Co-funded by the Erasmus+ Programme of the European Union

Зависимость от объемного соотношения компонент В случае гомогенной (однородной), изотропной среды векторы плотности электрического тока **ј** и напряженности электрического поля **E**, связаны друг с другом выражением:

$$\mathbf{j} = \mathbf{\sigma} \mathbf{E} \tag{1.1}$$

В нерегулярных (неупорядоченных) гетерогенных системах векторы плотности электрического тока **j** и напряженности электрического поля **E**, а также тензоры удельной электропроводности и диэлектрической проницаемости являются случайными функциями радиус-вектора **r**:

$$\mathbf{j}(\mathbf{r}) = \sigma(\mathbf{r})\mathbf{E}(\mathbf{r}) \tag{1.2}$$

Зависимость от объемного соотношения компонент

В случайно неоднородной гетерогенной системе основной характеристикой, описывающей перенос зарядов, является эффективная скалярная электропроводность $\sigma_{эф\phi}$, которая определяется как коэффициент, связывающий средние по объему V значения локальной плотности электрического тока $j = j(\mathbf{r})$ и локальной напряженности поля $E = E(\mathbf{r})$:

$$\langle \mathbf{j}
angle = \sigma_{2 \phi \phi} \langle \mathbf{E}
angle$$

где

$$\langle j \rangle = \frac{1}{V} \int_{V} j(\mathbf{r}) dV, \quad \langle E \rangle = \frac{1}{V} \int_{V} E(\mathbf{r}) dV$$

Co-funded by the Erasmus+ Programme of the European Union

Зависимость от объемного соотношения компонент

$$\langle \mathbf{j} \rangle = \mathbf{\sigma}_{\mathbf{3}\mathbf{\Phi}\mathbf{\Phi}} \langle \mathbf{E} \rangle \qquad \langle j \rangle = \frac{1}{V} \int_{V} j(\mathbf{r}) dV, \quad \langle E \rangle = \frac{1}{V} \int_{V} E(\mathbf{r}) dV$$

Эффективная электропроводность **о**_{эфф} гетерогенных систем прежде всего определяется:

электропроводностью компонентов σ_i

Co-funded by the Erasmus+ Programme of the European Union

Зависимость от объемного соотношения компонент

$$\langle \mathbf{j} \rangle = \boldsymbol{\sigma}_{\boldsymbol{\partial} \boldsymbol{\Phi} \boldsymbol{\Phi}} \langle \mathbf{E} \rangle \qquad \langle j \rangle = \frac{1}{V} \int_{V} j(\mathbf{r}) \mathrm{d} V, \quad \langle E \rangle = \frac{1}{V} \int_{V} E(\mathbf{r}) \mathrm{d} V$$

Эффективная электропроводность **о**_{эфф} гетерогенных систем прежде всего определяется:

- электропроводностью компонентов σ_i и
- их объемным содержанием: $x_i = V_i/V$

Зависимость от объемного соотношения компонент

$$\langle \mathbf{j} \rangle = \mathbf{\sigma}_{\mathbf{D} \mathbf{\Phi} \mathbf{\Phi}} \langle \mathbf{E} \rangle \qquad \langle j \rangle = \frac{1}{V} \int_{V} j(\mathbf{r}) dV, \quad \langle E \rangle = \frac{1}{V} \int_{V} E(\mathbf{r}) dV$$

Эффективная электропроводность **о**_{эфф} гетерогенных систем прежде всего определяется:

- электропроводностью компонентов σ_i и
- их объемным содержанием: $x_i = V_i/V$
 - *V_i* объем *i*-го компонента;
 - V полный объем гетерогенной системы

 $\sum_{i x_i} = 1$

Бинарная гетерогенная система, состоящая из двух компонентов-фаз, описывается одним параметром $x = x_1$, так как $x_2 = 1 - x$.

Зависимость от объемного соотношения компонент

Двухфазная гетерогенная система считается сильно неоднородной, если электропроводность дисперсионной среды (матрицы) σ_2 на несколько порядков отличается от электропроводности дисперсной фазы (наполнителя) σ_1 .

Зависимость от объемного соотношения компонент

Двухфазная гетерогенная система считается сильно неоднородной, если электропроводность дисперсионной среды (матрицы) σ_2 на несколько порядков отличается от электропроводности дисперсной фазы (наполнителя) σ_1 .

Общий вид зависимости эффективной проводимости гетерогенной системы металлдиэлектрик для области 0 < *x* < 1 при *перколяционном переход*е:

Зависимость от объемного соотношения компонент

Двухфазная гетерогенная система считается сильно неоднородной, если электропроводность дисперсионной среды (матрицы) σ_2 на несколько порядков отличается от электропроводности дисперсной фазы (наполнителя) σ_1 .

Co-funded by the Erasmus+ Programme of the European Union

 \mathcal{O}

Co-funded by the Erasmus+ Programme of the European Union

Диэлектрическая сторона

 $x < x_c$

Металлический режим (при х >> х_с) характеризуется низкими значениями удельного электрического сопротивления (высокой электропроводноостью).

Проект "Physics", ЭРАЗМУС+, Рига (Латвия), 7 февраля 2018 г.

Влияние матрицы и наполнителя на проводимость НКМ

По характеру распределения наполнителя в связующем КМ можно упрощенно разделить на несколько больших групп:

• упорядоченные

КМ с частицами наполнителя которые находятся в более или менее регулярных "узлах решетки"

Влияние матрицы и наполнителя на проводимость НКМ

По характеру распределения наполнителя в связующем КМ можно упрощенно разделить на несколько больших групп:

статистические (неупорядоченные)

В статистических КМ частицы наполнителя расположены хаотически.

Влияние матрицы и наполнителя на проводимость НКМ

По характеру распределения наполнителя в связующем КМ можно упрощенно разделить на несколько больших групп:

структурированные

В структурированных КМ наполнитель образует одномерные (*цепочечные, нитеобразные*), двумерные (*плоские, слоистые*) или же объемные (*каркасные*) структуры

Влияние матрицы и наполнителя на проводимость НКМ

По характеру распределения наполнителя в связующем КМ можно упрощенно разделить на несколько больших групп:

Брадиентные

В градиентных КМ эффективная электропроводность *изменяется вдоль выбранного направления* внутри тела из-за неравномерного (с градиентом концентрации) распределения наполнителя

Влияние матрицы и наполнителя на проводимость НКМ

При одинаковых внешних условиях электропроводность неупорядоченных НКМ зависит от:

- типа наполнителя и его концентрации,
- морфологии проводящих наночастиц (форма, сложная атомная и фазовая структура),
- физико-химического состояния поверхности раздела (интерфейса) матрица-наполнитель,
- типа матрицы,
- способа и технологических параметров изготовления,
- фазового состояния проводящей и непроводящей фаз (кристаллическое, аморфное, магнитное, суперпарамагнитное и др.)

Влияние матрицы и наполнителя на проводимость НКМ

Самым существенным параметром, оказывающим влияние на электропроводность, является объемная доля (концентрация) *х* электропроводящего наполнителя («металла»):

 $x = V_M / V,$

V_M — суммарный объем частиц наполнителя (металла), V — объем композита (гетерогенной системы).

Влияние матрицы и наполнителя на проводимость НКМ

$x = V_M / V,$

При от *0 < x < 1* эффективная Ig электропроводность КМ возрастает по сигма-образному закону от электропроводности диэлектрической матрицы до электропроводности металлической фазы (наполнителя)

Зависимость эффективной электропроводности от концентрации наполнителя для композитов полипропилен/алюминий, полученных методом полимеризационного наполнения (1) и вальцевания механической смеси компонентов (2)

Влияние матрицы и наполнителя на проводимость НКМ

В КМ, где наполнитель состоит из проводящих частиц с микронными и более размерами, эквивалентной схемой КМ до порога перколяции (с точки зрения его поведения на переменном токе) является сетка из двух типов резисторов (металл R_c и диэлектрик R_d) и одного типа конденсатора (диэлектрик C_d).

Схематическое представление композита до порога протекания (*a*) и его эквивалентная схема замещения (б)

Влияние матрицы и наполнителя на проводимость НКМ

При превышении концентрацией электропроводящей фазы порогового значения *х*_{*с*} в композите обязательно возникает **перколяционная проводящая сетка**.

Схематическое представление композита за порогом протекания (a) и его эквивалентная схема замещения (b)

Влияние матрицы и наполнителя на проводимость НКМ

Наличие петель в проводящей сетке приводит к эквивалентной схеме замещения такого композита в виде последовательно соединенных резисторов R_c и индуктивностей L_c (петель)

Схематическое представление композита за порогом протекания (a) и его эквивалентная схема замещения (δ)

Влияние матрицы и наполнителя на проводимость НКМ

Зависимость проводимости на постоянном токе (а) и ее второй производной по концентрации (б) при температуре 298 К от концентрации металлической фазы в исходных пленках (Co_{0.45}Fe_{0.45}Zr_{0.10})_x(Al₂O₃)_{1-x}, осажденных в атмосфере чистого аргона

Влияние матрицы и наполнителя на проводимость НКМ

Изображение концентрационной зависимости удельного электросопротивления (1,2) и низкочастотного удельного адмиттанса (3,4) при 300 К в НКМ металл-диэлектрик (FeCoZr)_x(Al₂O₃)_{1-x},: 1, 3 - полученные в атмосфере аргона, 2. 4 - полученные в атмосфере аргон-

кислород.

Основные механизмы электропереноса в НКМ являются туннелирование и (или) прыжки электронов через диэлектрическую прослойку.

Влияние матрицы и наполнителя на проводимость НКМ

Изображение концентрационной зависимости удельного электросопротивления (1,2) и низкочастотного удельного адмиттанса (3,4) при 300 К в НКМ металл-диэлектрик $(FeCoZr)_x(Al_2O_3)_{1-x}$;

 1, 3 - полученные в атмосфере аргона,
2. 4 - полученные в атмосфере аргонкислород.

Основные механизмы электропереноса в НКМ являются туннелирование и (или) прыжки электронов через диэлектрическую прослойку и другие фазы (если таковые образуются, например, в виде структуры типа «ядрооболочка» внутри диэлектрической матрицы).

Влияние матрицы и наполнителя на проводимость НКМ

Наличие оболочки обычно приводит к смещению в сторону увеличения содержания металла положения порога формирования высокопроводящего кластера в диэлектрической матрице.

Схематическое изображение нанокомпозита металл-диэлектрик со структурой металлических частиц наполнителя типа «ядро-оболочка» за счет окисления наночастиц

Влияние матрицы и наполнителя на проводимость НКМ

Наличие оболочки обычно приводит к смещению в сторону увеличения содержания металла положения порога формирования высокопроводящего кластера в диэлектрической матрице.

В этом случае, этот порог нельзя именовать порогом перколяции (в силу недвухфазности системы).

«Порог касания» наночастиц

Схематическое изображение нанокомпозита металл-диэлектрик со структурой металлических частиц наполнителя типа «ядро-оболочка» за счет окисления наночастиц

Влияние температуры на электроперенос в НКМ

Температурные зависимости электросопротивления осажденного в аргоне НКМ металл-диэлектрик (FeCoZr)_x(Al₂O₃)_{1-x} до (б) и после (в) порога перколяции: 1 – x = 31 ат.%; 2 - 33 ат.%; 3 - 35 ат.%; 4 - 38 ат.%; 5 – 43 ат.%; 6 – 46 ат.%; 7 - 48 ат.%; 8 – 50 ат.%; 9 – 52 ат.%; 10 – 63 ат.%; 11 – плёнка $Fe_{45}Co_{45}Zr_{10}$

Влияние температуры на электроперенос в НКМ

Температурные зависимости электросопротивления осажденного в аргоне НКМ металл-диэлектрик (FeCoZr)_x(Al₂O₃)_{1-x} до порога перколяции: 1 – x = 31 ат.%; 2 - 33 ат.%; 3 - 35 ат.%; 4 - 38 ат.%; 5 – 43 ат.%; 6 – 46 ат.%; 7 - 48 ат.%; 8 – 50 ат.%; 9 – 52 ат.%; 10 – 63 ат.%; 11 – плёнка $Fe_{45}Co_{45}Zr_{10}$

Влияние температуры на электроперенос в НКМ

Такое поведение означает, что температурный коэффициент электросопротивления ТКС = dp(T)/dT характеризуется отрицательным знаком, т.е. проводимость имеет активационный характер:

Температурные зависимости электросопротивления осажденного в аргоне НКМ металл-диэлектрик (FeCoZr)_x(Al₂O₃)_{1-x} до порога перколяции: 1 – x = 31 ат.%; 2 - 33 ат.%; 3 - 35 ат.%; 4 - 38 ат.%; 5 – 43 ат.%; 6 – 46 ат.%; 7 - 48 ат.%; 8 – 50 ат.%; 9 – 52 ат.%; 10 – 63 ат.%; 11 – плёнка $Fe_{45}Co_{45}Zr_{10}$

Влияние температуры на электроперенос в НКМ

Температурный ход электрической проводимости бинарных наногранулярных композитов далеко за поргом перколяции имеет смешанный характер - между экспоненциальной и степенной зависимостями:

Температурные зависимости электросопротивления осажденного в аргоне НКМ металл-диэлектрик (FeCoZr)_x(Al₂O₃)_{1-x} за порогом перколяции: 1 – x = 31 ат.%; 2 - 33 ат.%; 3 - 35 ат.%; 4 - 38 ат.%; 5 – 43 ат.%; 6 – 46 ат.%; 7 - 48 ат.%; 8 – 50 ат.%; 9 – 52 ат.%; 10 – 63 ат.%; 11 – плёнка $Fe_{45}Co_{45}Zr_{10}$

Влияние температуры на электроперенос в НКМ

На металлической стороне ПМИ между проводящими каналами существуют диэлектрические области, которые увеличивают общий уровень электросопротивления материала, но *не влияют на механизм проводимости* в целом.

Температурные зависимости электросопротивления осажденного в аргоне НКМ металл-диэлектрик (FeCoZr)_x(Al₂O₃)_{1-x} за порогом перколяции: 1 – x = 31 ат.%; 2 - 33 ат.%; 3 - 35 ат.%; 4 - 38 ат.%; 5 – 43 ат.%; 6 – 46 ат.%; 7 - 48 ат.%; 8 – 50 ат.%; 9 – 52 ат.%; 10 – 63 ат.%; 11 – плёнка $Fe_{45}Co_{45}Zr_{10}$

Резюмируем основные результаты

по электропереносу

в НКМ металл-диэлектрик

Электрическое сопротивление композиционных наногранулированных материалов металл-диэлектрик обусловлено их структурой:

1. Оно увеличивается с уменьшением объемной доли металла *х.*

Электрическое сопротивление композиционных наногранулированных материалов металл-диэлектрик обусловлено их структурой:

1. Оно увеличивается с уменьшением объемной доли металла *х.*

2. Если металл распределен в сплошной диэлектрической среде (матрице) в виде изолированных частиц наблюдается *диэлектрический режим проводимости* с отрицательным температурным коэффициентом сопротивления (ТКС).

Электрическое сопротивление композиционных наногранулированных материалов металл-диэлектрик обусловлено их структурой:

1. Оно увеличивается с уменьшением объемной доли металла *х.*

2. Если металл распределен в сплошной диэлектрической среде (матрице) в виде изолированных частиц наблюдается **диэлектрический режим проводимости** с отрицательным температурным коэффициентом сопротивления (ТКС).

3. В диэлектрическом режиме проводимость осуществляется путем прыжков или туннелирования электронов через прослойки диэлектрической матрицы между изолированными металлическими частицами

Электрическое сопротивление композиционных наногранулированных материалов металл-диэлектрик обусловлено их структурой:

4. На пороге перколяции (**x**_c ~ **0,5**), проводящие частицы начинают соединяться между собой в лабиринтную (сетчатую) структуру.

Электрическое сопротивление композиционных наногранулированных материалов металл-диэлектрик обусловлено их структурой:

4. На пороге перколяции (*x_c* ~ 0,5), проводящие частицы начинают соединяться между собой в лабиринтную (сетчатую) структуру.

5. Точная величина **x**_с зависит от материала металлической и диэлектрической фаз, а также формы металлических наночастиц

Электрическое сопротивление композиционных наногранулированных материалов металл-диэлектрик обусловлено их структурой:

4. На пороге перколяции (*x_c* ~ 0,5), проводящие частицы начинают соединяться между собой в лабиринтную (сетчатую) структуру.

5. Точная величина **x**_c зависит от материала металлической и диэлектрической фаз, а также формы металлических наночастиц

6. За порогом перколяции (*x* > *x*_c) удельное электрическое сопротивление резко падает с увеличением *x* и ТКС изменяет свой знак на положительный (наблюдается *металлический режим проводимости*).

Модели температурных зависимостей электропереноса в НКМ

Модели прыжкового электропереноса в НКМ

Итак, на диэлектрической стороне ПМИ экспериментальные температурные зависимости электрической проводимости нанокомпозитов в области низких температур в большинстве случаев подчиняется, так называемому, *моттовскому соотношению:*

Температурные зависимости электросопротивления осажденного в аргоне HKM металл-диэлектрик (FeCoZr)_x(Al₂O₃)_{1-x} до порога перколяции: 1 – x = 31 ат.%; 2 - 33 ат.%; 3 - 35 ат.%; 4 - 38 ат.%; 5 – 43 ат.%; 6 – 46 ат.%; 7 - 48 ат.%; 8 – 50 ат.%; 9 – 52 ат.%; 10 – 63 ат.%; 11 – плёнка $Fe_{45}Co_{45}Zr_{10}$

ПРОВОДЯЩИЕ НАНОКОМПОЗИТЫ МЕТАЛЛ-ПОЛУПРОВОДНИК-ДИЭЛЕКТРИК

Co-funded by the Erasmus+ Programme of the European Union

Модели прыжкового электропереноса в НКМ

Величина показателя экспоненты *n* в зависимости *o*(*T*), т.е. тип прыжковой проводимости с переменной энергией активации (VRH-модель), определяется характером *энергетического распределения плотности локализованных состояний* в запрещенной зоне в окрестности уровня

Температурные зависимости электросопротивления осажденного в аргоне НКМ металл-диэлектрик (FeCoZr)_x(Al₂O₃)_{1-x} до порога перколяции: 1 – x = 31 ат.%; 2 - 33 ат.%; 3 - 35 ат.%; 4 - 38 ат.%; 5 – 43 ат.%; 6 – 46 ат.%;

7 - 48 ат.%; 8 – 50 ат.%; 9 – 52 ат.%; 10 – 63 ат.%; 11 – плёнка Fe₄₅Co₄₅Zr₁₀

Модели прыжкового электропереноса в НКМ Прыжки с переменной длиной: закон Мотта

Число локализованных состояний в ε - окрестности $N(\varepsilon) = g_m \varepsilon$. Среднее расстояние между состояниями $r_{ij}(\varepsilon) = [N(\varepsilon)]^{-1/3}$. Средняя разность энергий состояний порядка ε .

Модели прыжкового электропереноса в НКМ Прыжки с переменной длиной: закон Мотта

Модели прыжкового электропереноса в НКМ

Прыжки с переменной длиной: закон Шкловского-Эфроса

При наличии кулоновской щели плотность состояний

$$g(\varepsilon) = \left(\frac{\kappa}{e^2}\right)^d |\varepsilon|^{d-1}, \quad g(0) = 0$$

а количество состояний в *є*-окрестности уровня Ферми

$$N(\varepsilon) = \left(\frac{\kappa\varepsilon}{e^2}\right)^d$$

Модели прыжкового электропереноса в НКМ

Прыжки с переменной длиной: закон Шкловского-Эфроса

Далее все стандартно

$$r_{ij} = [N(\varepsilon)]^{-1/d} = \frac{e^2}{\kappa\varepsilon},$$

$$\varepsilon_{\min} = \left(\frac{2e^2T}{\kappa a_B}\right)^{\frac{1}{2}} = (TT_{III3})^{\frac{1}{2}}, \quad T_{III3} = \frac{2e^2}{\kappa a_B}$$

и проводимость равна

$$\sigma(T) = \sigma_{III3} \cdot \exp\left(-\frac{T_{III3}}{T}\right)^{0,5}$$

Модели прыжкового электропереноса в НКМ

Как определить:

- механизм VRH,
- значения величин T_{O} и σ_{O} , и из них
- эффективные характеристики прыжкового переноса (плотность локализованных состояний на уровне Ферми *g*(*E*_F), радиус локализации *a* и др).

Модели прыжкового электропереноса в НКМ

Это делается путем линеаризации температурной зависимости проводимости для изучаемых составов нанокомпозита в координатах Мотта

$\ln(\sigma/\sigma_0) \propto (1/T)^n$

Модели прыжкового электропереноса в НКМ

Закон Мотта

Пример линеаризации зависимостей $\sigma(T)$ <u>в неокисленных</u> пленочных наногранулярных композитах (FeCoZr)_x(Al₂O₃)_{1-x} при x < 50 ат.% в координатах Мотта Lg $\sigma(T) - (1/T)^{0,25}$

Экспериментальные температурные зависимости электропроводности $\sigma(T)$ для *неокисленных* плёнок, (FeCoZr)_x(Al₂O₃)_{1-x}: 1 - (FeCoZr) (Al O) : 2 - (FeCoZr) (Al O) :

$$3 - (FeCoZr)_{43}(Al_2O_3)_{69}, 2 - (FeCoZr)_{38}(Al_2O_3)_{62}, 3 - (FeCoZr)_{43}(Al_2O_3)_{57}; 4 - (FeCoZr)_{46}(Al_2O_3)_{54}; 3 - (FeCoZr)_{46}(Al_2O_3)_{56}; 4 - (FeCoZr)_{56}(Al_2O_3)_{56}; 4 - (FeCOZr)_{56}(Al_2O_3)_{56}$$

5 - $(\text{FeCoZr})_{48}(\text{Al}_2\text{O}_3)_{52}$; 6 - $(\text{FeCoZr})_{50}(\text{Al}_2\text{O}_3)_{50}$;

7 - $(FeCoZr)_{63}(Al_2O_3)_{37}$

$$\sigma(T) = \sigma_M \cdot \exp\left(-\frac{T_M}{T}\right)^{0,25}$$

ПРОВОДЯЩИЕ НАНОКОМПОЗИТЫ МЕТАЛЛ-ПОЛУПРОВОДНИК-ДИЭЛЕКТРИК

Co-funded by the Erasmus+ Programme of the European Union

Модели прыжкового электропереноса в НКМ

Экспериментальные температурные зависимости электропроводности $\sigma(T)$ для *неокисленных* плёнок, (FeCoZr)_x(Al₂O₃)_{1-x}:

1 -
$$(FeCoZr)_{31}(Al_2O_3)_{69}$$
; 2 - $(FeCoZr)_{38}(Al_2O_3)_{62}$;

- 3 $(\text{FeCoZr})_{43}(\text{Al}_2\text{O}_3)_{57}$; 4 $(\text{FeCoZr})_{46}(\text{Al}_2\text{O}_3)_{54}$;
- 5 $(\text{FeCoZr})_{48}(\text{Al}_2\text{O}_3)_{52}$; 6 $(\text{FeCoZr})_{50}(\text{Al}_2\text{O}_3)_{50}$;

7 - $(\text{FeCoZr})_{63}(\text{Al}_2\text{O}_3)_{37}$

 $\sigma(T) = \sigma_M \cdot \exp\left(-\frac{T_M}{T}\right)^{0.25}$

$$\sigma_{M} = e^{2} \cdot R^{2} \cdot v_{ph} \cdot g(E_{F})$$

Закон Мотта

$$T_M = \frac{16}{a^3 \cdot k \cdot g(E_F)}$$

е – заряд электрона, *R* - длина прыжка, *v*_{ph} - частота фононов обуславливающих прыжки локализованным элетронов ПО состояниям, T _ абсолютная температура, $g(E_F)$ плотность локализованных состояний в окрестности уровня Ферми, а - радиус волновой функции локализации электрона, k постоянная Больцмана.

Модели прыжкового электропереноса в НКМ

Закон Шкловского-Эфроса

Пример линеаризации зависимостей $\sigma(T)$ <u>в окисленных</u> пленочных наногранулярных композитах (FeCoZr)_x(Al₂O₃)_{1-x} при x < 50 ат.% в координатах Мотта Lg $\sigma(T) - (1/T)^{0,5}$

Экспериментальные температурные зависимости электропроводности $\sigma(T)$ для *окисленных* плёнок, (FeCoZr)_x(Al₂O₃)_{1-x}: 1 - (FeCoZr)₃₁(Al₂O₃)₆₉; 2 - (FeCoZr)₃₈(Al₂O₃)₆₂;

- $3 (FeCoZr)_{43}(Al_2O_3)_{57}; 4 (FeCoZr)_{46}(Al_2O_3)_{54};$
- 5 $(FeCoZr)_{48}(Al_2O_3)_{52}$; 6 $(FeCoZr)_{50}(Al_2O_3)_{50}$;
- 7 $(\text{FeCoZr})_{63}(\text{Al}_2\text{O}_3)_{37}$

$$\sigma(T) = \sigma_{III3} \cdot \exp\left(-\frac{T_{III3}}{T}\right)^{0.5}$$

ПРОВОДЯЩИЕ НАНОКОМПОЗИТЫ МЕТАЛЛ-ПОЛУПРОВОДНИК-ДИЭЛЕКТРИК

Co-funded by the Erasmus+ Programme of the European Union

Модели прыжкового электропереноса в НКМ

1 - $(FeCoZr)_{31}(Al_2O_3)_{69}$; 2 - $(FeCoZr)_{38}(Al_2O_3)_{62}$;

3 - $(FeCoZr)_{43}(Al_2O_3)_{57}$; 4 - $(FeCoZr)_{46}(Al_2O_3)_{54}$;

5 - (FeCoZr)₄₈(Al₂O₃)₅₂; 6 - (FeCoZr)₅₀(Al₂O₃)₅₀;

 $(\text{FeCoZr})_{x}(\text{Al}_{2}\text{O}_{3})_{1-x}$:

7 - $(FeCoZr)_{63}(Al_2O_3)_{37}$

Закон Шкловского-Эфроса

$$\sigma(T) = \sigma_{III3} \cdot \exp\left(-\frac{T_{III3}}{T}\right)^{0,5}$$
$$\sigma_{M} = e^{2} \cdot R^{2} \cdot v_{ph} \cdot g(E_{F})$$

ph

$$T_{III\Im} = \frac{2e^2}{\kappa a_B}$$

е – заряд электрона, *R* - длина - частота фононов прыжка, V_{ph} обуславливающих прыжки электронов локализованным ПО Τ состояниям, _ абсолютная Экспериментальные температурные зависимости электропроводности $\sigma(T)$ для окисленных плёнок, $g(E_F)$ температура, плотность локализованных состояний в окрестности уровня Ферми, а - радиус волновой функции локализации электрона, *k* – диэлектрическая проницаемость.

Модели прыжкового электропереноса в НКМ

Если экстраполировать зависимости g(x) к концентрации металлической фазы, соответствующей порогу протекания, а затем использовать соотношение $g(E_F)_{X_C} = g_0 \cdot x_C$ можно оценить эффективную плотность электронных состояний на уровне Ферми металлических гранул g_0

Модель термоактивированного туннелирования Шенга-Эйблса в НКМ

В 1974 году в работе П. Шенг и Б. Эйблс предложили модель, согласно которой электрическая проводимость в диэлектрическом режиме в гранулированных композитах металлдиэлектрик осуществляется посредством термически активируемого туннелирования электронов из одной гранулы в другую через диэлектрический барьер.

Модель термоактивированного туннелирования Шенга-Эйблса в НКМ

Предположения модели Шенга-Эйблса:

• гранулы являются сферическими,

Модель термоактивированного туннелирования Шенга-Эйблса в НКМ

Предположения модели Шенга-Эйблса:

- гранулы являются сферическими,
- минимальное расстояние между гранулами пропорционально диаметру гранул D,

Модель термоактивированного туннелирования Шенга-Эйблса в НКМ

Предположения модели Шенга-Эйблса:

- гранулы являются сферическими,
- минимальное расстояние между гранулами обратно пропорционально диаметру гранул *d*,
- Отношение ширины барьера s к диаметру гранулы d для данного соотношения x металлической и диэлектрической фаз s/d = const

Модель термоактивированного туннелирования Шенга-Эйблса в НКМ

В процессе переноса заряда электрон должен туннелировать из одной нейтральной гранулы в другую под действием электрического поля и колебаний решетки, создав, таким образом, **диполь** - пару положительно и отрицательно заряженных гранул.

Иллюстрация влияния электрического поля на уровень Ферми и генерацию носителей заряда электрическим полем в гранулированном нанокомпозите с однородным распределением гранул для наглядности.

ПРОВОДЯЩИЕ НАНОКОМПОЗИТЫ МЕТАЛЛ-ПОЛУПРОВОДНИК-ДИЭЛЕКТРИК

Co-funded by the Erasmus+ Programme of the European Union

Модель термоактивированного туннелирования Шенга-Эйблса в НКМ

Кулоновская энергия диполя имеет вид

$$E_C = \frac{e^2}{\varepsilon} \frac{s}{d^2(1/2 + s/d)}$$
(1)

где *d* – размер гранулы, *s* – расстояние между гранулами (ширина барьера), а *F* – функция, вид которой зависит от формы и расположения гранул и силы взаимодействия между парами зарядов.

Модель термоактивированного туннелирования Шенга-Эйблса в НКМ

$$E_C = \frac{e^2}{\varepsilon} \frac{s}{d^2(1/2 + s/d)}$$
(1)

Различают две лимитирующих величины зарядовой энергии диполя Ес:

1. Энергия *E_c*^o, требующаяся для образования **пары пространственно разделенных** положитель-но и отрицательно заряженных гранул.

2. Энергия E_c¹ ≈ E_c^o/2 которая требуется для образования пары соседних (ближайших) положительно и отрицательно заряженных гранул.

ПРОВОДЯЩИЕ НАНОКОМПОЗИТЫ МЕТАЛЛ-ПОЛУПРОВОДНИК-ДИЭЛЕКТРИК

Co-funded by the Erasmus+ Programme of the European Union

Модель термоактивированного туннелирования Шенга-Эйблса в НКМ

При падении напряжения между соседними гранулами **ΔV** каждая гранула нейтральна до того, как произошло туннелирование (а), а после акта туннелирования (под действием поля и колебаний решетки) в одной грануле осталась дырка, а в другой – электрон (б), которые после этого будут дрейфовать к электродам

Иллюстрация влияния электрического поля на энергетические уровни и генерацию носителей заряда электрическим полем в гранулированном нанокомпозите с однородным распределением гранул для наглядности.

Модель термоактивированного туннелирования Шенга-Эйблса в НКМ

Концентрация носителей заряда, на образование которых требуется энергия *E*^o (число термически активированных электронов, обладающих требуемой (кулоновской) энергией) пропорционально больцмановскому фактору

$$N \sim \exp\left[-E_{C}/2kT\right]$$
⁽²⁾

k – константа Больцмана; *T* – температура; *E*_C – кулоновская энергия гранулы.

Модель термоактивированного туннелирования Шенга-Эйблса в НКМ

В результате, температурная зависимость проводимости нанокомпозита металл-диэлектрик в данной модели обусловлена **двумя процессами:**

1. Генерация диполя и свободных электронов (дырок) с концентрацией *N* ~ exp(-*E_c/kT*) за счет термической активации (под действием колебаний решетки).

1. Туннелирование электронов (дырок) к электродам образца через энергетический барьер, величина которого *ф* пропорциональна энергии *E_c* (под действием тянущего электрического поля)

ПРОВОДЯЩИЕ НАНОКОМПОЗИТЫ МЕТАЛЛ-ПОЛУПРОВОДНИК-ДИЭЛЕКТРИК

Co-funded by the Erasmus+ Programme of the European Union

Модель термоактивированного туннелирования Шенга-Эйблса в НКМ

$$E_{c} = \frac{e^{2}}{\varepsilon} \frac{s}{d^{2}(1/2 + s/d)}$$
(1)

Учет в модели Шенга-Эйблса двух процессов (туннелирование электронов между гранулами и необходимость приобретения электроном некоторой энергии $E \ge E_c$ новое соотношение для удельного электросопротивления:

$$\rho = \rho_0 \left(\exp(2\sqrt{C/k_B T}) \right) \tag{4}$$

где

$$C = (2\pi/h)(2m\phi)^{1/2}sE_C$$

определяет энергию активации туннелирования

Модель термоактивированного туннелирования Шенга-Эйблса в НКМ

$$C = (2\pi/h)(2m\phi)^{1/2} sE_C \qquad \rho = \rho_0 \left(\exp(2\sqrt{C/k_B T}) \right)$$

Зависимости удельного электрического сопротивления гранулированных нанокомпозитов Co_x(SiO₂)_{1-x} в координатах

Модель неупругого резонансного туннелирования в НКМ

Для объяснения отклонения механизмов электропереноса от законов термоактивированного туннелирования Шенгла-Эйблса или прыжкового VRH переноса Мотта и Шкловского-Эфроса от экспериментальных температурных зависимостей удельного электросопротивления была разработана *теоретическая модель неупругого туннелирования через аморфные диэлектрические слои*

Модель неупругого резонансного туннелирования в НКМ

Перенос электронов по локализованным состояниям матрицы может иметь как **упругий**, так и *неупругий* характер.

Модель неупругого резонансного туннелирования в НКМ

Перенос электронов по локализованным состояниям матрицы может иметь как упругий, так и неупругий характер.

Для случая НКМ с сильно дефектной (аморфной) матрицей *преобладает неупругое туннелирование* вследствие дискретности энергетических уровней в металлических гранулах из-за небольшого числа взаимодействующих атомов.

Модель неупругого резонансного туннелирования в НКМ

Согласно **модели неупругого туннелирования** основную роль здесь играют процессы неупругого резонансного туннелирования **в** каналах, содержащих локализованные состояния вблизи уровня Ферми с разбросом энергий порядка kT.

Модель неупругого резонансного туннелирования в НКМ

Согласно **модели неупругого туннелирования** основную роль здесь играют процессы неупругого резонансного туннелирования **в** каналах, содержащих локализованные состояния вблизи уровня Ферми с разбросом энергий порядка kT.

Температурная зависимость проводимости в канале, содержащем *п* примесей, имеет степенную зависимость от температуры

$$\sigma_n = P\left(\frac{\Lambda^2}{\rho_0 c^5}\right)^{(n-1)/(n+1)} \frac{(ga^2 n^2 l)^n T^{\gamma_n} E^{\beta_n}}{al} \exp\left[\frac{-2l}{a(n+1)}\right]$$
(6)

Средняя электрическая проводимость между гранулами определяется суммой

$$\sigma^{(gr)} = \sum_{n} \sigma_{n} \tag{7}$$

a – радиус локализованного состояния; *l* – среднее расстояние между гранулами; $\gamma_n = n - 2/(n+1)$; $\beta_n = 2n/(n+1)$; *P* – коэффициент; *A* - константа деформационного потенциала; ρ_0 - плотность вещества матрицы; с – скорость звука; *g* – плотность локализованных состояний; *E* – глубина залегания локализованного состояния в области барьера.

5. Электропроводность НКМ на переменном токе

- Основные экспериментальные результаты
- Основные модели электропереноса на переменном токе
- Возможные применения

МПИ пленочные нанокомпозиты с эффектом «отрицательной емкости»

Составнва конфигурация композитной мишени позволяет получать в одном технологическом цикле целый набор составов пленки с содержанием металлической фазы

0.20 < x < 0.80

Variable regimes:

Substrate temperature Composition of target Atmosphere of deposition

The components of compound targets:

- 1 metallic alloy ground plate (FeCoZr, FeCoB, Co, Cu, etc.)
- 2 stripes from dielectric material (SiO₂, CaF₂, Al₂O₃, PbZrTiO₃, etc.)

MSI film nanocomposites possessing "negative capacitance" effect

The films with nanoparticles of FeCo-based alloy randomly distributed in insulating matrixes (Al₂O₃, PbZrTiO₃ (PZT), CaF₂, SiO₂)

Variable regimes:

Substrate temperature Composition of target Atmosphere of deposition

The components of compound targets:

1 - metallic alloy ground plate (FeCoZr, FeCoB, Co, Cu, etc.)

2 – stripes from dielectric material (SiO $_2$, CaF $_2$, Al $_2O_3$, PbZrTiO $_3$, etc.)

MSI film nanocomposites possessing "negative capacitance" effect

Суть эффекта отрицательной емкости состоит в преобладании индуктивного вклада над емкостной в реактривной составляющей импеданса МДП пленки

Variable regimes:

Substrate temperature Composition of target Atmosphere of deposition

The components of compound targets:

- 1 metallic alloy ground plate (FeCoZr, FeCoB, Co, Cu, etc.)
- 2 stripes from dielectric material (SiO₂, CaF₂, Al₂O₃, PbZrTiO₃, etc.)

MSI film nanocomposites possessing "negative capacitance" effect
"Negative capacitance" effect is observed in
nanogranular composite MSI films:
when they are deposited in Ar + O₂ atmosphere;
when FeCo-based nanoparticles possess "core-shell" structure;
when nanoparticles are close to the percolation threshold

Sketch of "core-shell" nanoparticle

- Ξ crystalline α-FeCo(Zr,O) core
 - amorphous Fe³⁺Fe²⁺Co(Zr,O) oxide shell
 - amorphous or crystalline dielectric matrix
- Zr oxide (ZrO₂)

ПРОВОДЯЩИЕ НАНОКОМПОЗИТЫ МЕТАЛЛ-ПОЛУПРОВОДНИК-ДИЭЛЕКТРИК

Co-funded by the Erasmus+ Programme of the European Union

MSI film nanocomposites possessing "negative capacitance" effect

HRTEM and TEM images for the (FeCoZr)_x(Al₂O₃)_{1-x} nanocomposite films

- 1. Stabilized granular structure with nanoparticle dimensions $D_{FeCo} < 6 \text{ nm}$
- "Core-shell" nanoparticles due to selective Fe/Co/Zr oxidation: Core –α-FeCo(Zr) alloy with bcc crystallin lattice; Shell – Fe-, Co- and FeCo-based oxides with semiconducting properties
- 3. No agglomeration of metallic nanoparticles up to x~ 0.70

MSI film nanocomposites possessing "negative capacitance" effect

Fig. 2. θ (f) curves (left) and modulo C(f) dependences (right) for the as-deposited (FeCoZr)_{0.42}(PZT)_{0.58} sample for different measuring temperatures

MSI film nanocomposites possessing "negative capacitance" effect

MSI film nanocomposites possessing "negative capacitance" effect

Therefore for $f > f_{min}$ the phase delay $2\pi f \tau_m$ of the next jump of electron either back to the 1-st nanoparticle or forward to the 3-rd nanoparticle under subjection of external alternating electric field can become greater than 2π .

Суть эффекта отрицательной емкости состоит в преобладании индуктивного вклада над емкостной в реактривной составляющей импеданса МДП пленки

MSI film nanocomposites possessing "negative capacitance" effect

Основные требования к МДП наноструктурам с большим эффектом "отрицательной емкости":

- 1. Наличие наночастиц α-FeCo(Zr) со структурой «ядро-оболочка» и размерами не более 10 нм (подавленная аггломерация наночастиц).
- 2. Формирование вокруг металлического ядра α-FeCo(Zr) оболочки из полупроводниковых железо-кобальтовых оксидов с шириной запрещенной зоны < 1 эВ (FeO/1.0 eV, Fe₃O₄ (Fe³⁺)/~0.1 eV)
- 3. Кристалличность и большая диэлектрическая проницаемость диэлектрической матрицы (CaF₂ \rightarrow Al₂O₃ \rightarrow PbZrTiO₃ \rightarrow SiO₂).
- 4. Сигмо-образный вид частотной зависимости действительной части импеданса $G(f) \approx G_o f^{\alpha}$ с зависящим от частоты показателем $\alpha = \alpha(f)$

Application as planar noncoil-like inductivities

фективный" индуктивный вклад в импеданс L ~ 20 мкГн/мкм

> $10^{-3} \,\mu H/\mu m^2$ p-n-p heterojunctions:

 $10^{-7} \,\mu H/\mu m^2$

Polymer nanocomposites: 10⁻⁶ µH/µm²

Non coil-like inductivities for microelectronic

Capacitor-inductivity elements for electronic devices Polish patent P.39039 (2010)

Одно из возможных применений в ИС или ГИС: Замена гирарторов (импеданс-инверторов или сдвигателей фазы)

MSI film nanocomposites possessing "negative capacitance" effect

Мы ищем партнеров-технологов

<u>Предложение:</u>

1. Планарные микроиндукторы могут быть использованы вместо гираторов в интегральных схемах (например, гибридных)

<u>Вопросы и проблемы:</u>

- 1. Желательно сделать технологию совместимую с планарной кремниевой технологией, т.е. использовать матрицу из оксида кремния
- 2. Попытаться получить полупроводниковые наночастицы в матрице из оксида кремния (например, путем имплантации и отжига)
- 3. Необходимо создать прототип микроиндукторов, изготовленных по планарной кремниевой технологии

Магниточувствительные Ni/SiO₂/Si композитные наноструктуры (TECONASS), содержащие массивы Ni наностолбиков на Si подложках в вертикальных порах слоя SiO₂

TECONASS - TEmplate-assisted Composite Nanostructures on Semiconducting Substrates

TEmplate-assisted Composite Nanostructures on Semiconductive Substrates (TECONASS)

TECONASS synthesis in porous templates is one of the best approaches to form arrays of magnetosensitive transdusers

Co-funded by the Erasmus+ Programme of the European Union

TEmplate-assisted Composite Nanostructures on Semiconductive Substrates (TECONASS)

Micrometers Pores diameter can overlay about 3 orders by value Nanometers Top views of etched templates

Co-funded by the Erasmus+ Programme of the European Union

TEmplate-assisted Composite Nanostructures on Semiconductive Substrates (TECONASS)

Вид сверху (а) и в поперечном сечении (б) структуры SiO₂/Si(100) с мезапорами

Electrochemical deposition of Ni and Cu onto monocrystalline n-Si(100) wafers and into nanopores in Si/SiO2 template / Yu.A. Ivanova, D.K. Ivanou, A.K. Fedotov, E.A. Streltsov, S.E. Demyanov, A.V. Petrov, E.Yu. Kaniukov, D. Fink // J. Mater. Sci. – 2007. – Vol. 42. – P. 9163–9169.

Co-funded by the Erasmus+ Programme of the European Union

TEmplate-assisted Composite Nanostructures on Semiconductive Substrates (TECONASS)

СЭМ изображение скола (а) и поверхности (б) исследуемого образца,

содержащего столбики никеля

AFM image of the Ni rod array

TEmplate-assisted Composite Nanostructures on Semiconductive Substrates (TECONASS)

«Связки» из Ni наностолбиков в мезапористом темплейте n-Si/SiO₂, полученных электрохимическим заполнением пор наночастицами Ni были исследованы в температурной области 2 – 300 К и магнитных полях до 8 Тл с разной ориентацией векторов магнитного поля B и тока I

TEmplate-assisted Composite Nanostructures on Semiconductive Substrates (TECONASS)

TEmplate-assisted Composite Nanostructures on Semiconductive Substrates (TECONASS)

Вставка - MR₁₂(8 T) при T = 20 – 30 К для I₁₂ = 1000 нА при V_{tr} = + 2 B (2) and -2 B (1)

TEmplate-assisted Composite Nanostructures on Semiconductive Substrates (TECONASS) Резюме

1. Наноструктуры n-Si/SiO₂/Ni обнаруживают положительный магниторезистивный эффект до 200 - 700 % в температурной области 23-27 К при измерительных токах I₁₂ ≤ 100 нА и нулевом поперечном напряжении смещения V_{tr} = 0 V.

TEmplate-assisted Composite Nanostructures on Semiconductive Substrates (TECONASS) Резюме

2. Наноструктуры n-Si/SiO₂/Ni обнаруживают положительный магниторезистивный эффект до 40 000 % в температурной области 23-27 К при измерительных токах I₁₂ \leq 100 нА и поперечном напряжении смещения V_{tr} = = +2 V.

Co-funded by the Erasmus+ Programme of the European Union

TEmplate-assisted Composite Nanostructures on Semiconductive Substrates (TECONASS) Резюме

3. Наноструктуры n-Si/SiO₂/Ni обнаруживают положительный магниторезистивный эффект до 400-600 % в температурной области 200-300 К при измерительных токах I₁₂ ≤ 100 нА.

TEmplate-assisted **Co**mposite **Na**nostructures on **S**emiconductive **S**ubstrates (**TECONASS**)

Мы ищем партнеров-технологов

Возможные применения:

- 1. Создание 2D (планарных) магниточувствительных матриц для визуализации распределения магнитных полей по сечению рабочих каналов сверхпроводящих соленоидов, магнитных катушек, магнитов и др.
- 2. Использование гибких штоков с матрицей на торце позволит изучать распределения магнитных полей в магнитных системах со сложной конфигурацией рабочих каналов (трансформаторы, обмотки электродвигателей на гиперпроводниках и сверхпроводниках и т.п.)

TEmplate-assisted Composite Nanostructures on Semiconductive Substrates (TECONASS)

Предложение для реализации:

1. Изготовление пористых SiO₂ темплатов на Si подложках, содержащих систему упорядоченных вертикальных каналов длиной до 1 мкм и диаметром 10 – 100 нм с межпоровыми расстояниями 1 – 10 мкм методами стандартной планарной кремниевой технологии

TEmplate-assisted Composite Nanostructures on Semiconductive Substrates (TECONASS)

Предложение для реализации:

3. Создание прототипов магниточувствительных двумерных матриц для магнитной томографии магнитных систем со сложной конфигурацией

ПРОВОДЯЩИЕ НАНОКОМПОЗИТЫ МЕТАЛЛ-ПОЛУПРОВОДНИК-ДИЭЛЕКТРИК

Благодарю

за внимание

http://dl.bsu.by/pluginfile.php/98607/mod_resource/content/1/Chapter% 208.%20Electrically%20conductive%20nanocomposites%20RUS%20-%2028.04.2017.pdf

TEmplate-assisted Composite Nanostructures on Semiconductive Substrates (TECONASS)

TEmplate-assisted Composite Nanostructures on Semiconductive Substrates (TECONASS)