

Julia Fedotova, Julia Kasiuk

Institute for Nuclear Problems Belarusian State University

Collaborators:

AGH University of Science and Technology, Krakow Prof. Cz. Kapusta Dr. Hab. J. Przewoznik

Niewodniczanski Institute of Nuclear Physics PAN, Krakow **Prof. M. Marszalek** Mgr. A. Maximenko

Belarusian State University of Informatics & Radioelectronics, Minsk Prof. S. Lazaruk Mgr. O.Kupreeva

Institute of Materials Science, Vietnam Academy of Science and Technology, Hanoi T.N. Anh Nguyen, D. H. Manh, D. L. Vu

AGH

Nanostructures with perpendicular magnetic anisotropy

Applications:

Spintronic devices High density recording media Magnetic field sensors Magnetic tunneling junction sensors

Scope of the talk

Correlation between morphology, structure and magnetic properties in two types of nanostructured films:

I. Composite metal-insulator films FeCo-CaF₂, FeCo-Al₂O₃

II. Porous thin multilayered films of Co/Pd and Co/Pt

Investigation with complimentary techniques:

X-ray diffraction, Empyrean PANalytical diffractometer, Cu K_{α}

Transmission electron microscopy, Philips EM400T microscope, 120 kV

High-resolution electron microscopy, Philips CM200, 200 kV

X-ray absorption spectroscopy (EXAFS (Extended X-ray Absorption Fine Structure) and XANES (X-ray Absorption Near Edge Structure) ranges), European Synchrotron Radiation Facility

⁵⁷Fe Mössbauer spectroscopy, 77 K, 300 K, Co/Rh source, 40 mCi

Vibrating sample magnetometer, *Quantum Design PPMS, magnetic induction H up to 9 T, temperature T up to 2 K*

Perpendicular magnetic anisotropy:

Easy axis magnetization pointing perpendicular to the films plane

Experimental

I. Composite metal-insulator films FeCo-CaF₂, FeCo-Al₂O₃

- tunable magnetic and electric properties
- microminiature scale & arbitrary shape
- compatibility with silicon processing planar technology
- reproducible and reliable processing
- low cost & low power consumption

Perfect high-frequency properties:

high magnetization M_S low coercive force H_C high magnetic susceptibility μ high electrical resistivity ρ

Ion-beam sputtering at variable regimes: substrate T

target composition atmosphere of deposition (Ar, N_2 , O_2)

X-ray diffraction, Cu K_{α} , grazing incidence of 5 degree

Comprehensive characterization

- Identification of phase composition of granules and matrix
- Reasonable size characterization (estimation of D^{coh})

Phase identification: Rietveld refinement by *FullProf* program

Grain size estimation: Scherrer formula

$\Delta(2\theta)_{L} =$	(2)	(180)	λ	
	(1)	(π)	Dcosθ	

D^{coh} ~ 1-4 nm

Modern approach: Fourier transform of diffraction patterns

B.D.Hall *et al* J. Appl. Crystallography 33 (2000)

Ľ

Typical magnetic properties of metal-insulator films: random or in-plane orientation of magnetic moment

Experimental

FeCoZr-CaF₂: Structure and phase composition

Phase composition

Origin of growth-induced anisotropy:

- Surface oxidation of granules
- Effect of matrix composition
- Substrate temperature

Formation of granular structure in nanocomposite *M-I* films

Criteria:

no chemical compounds

k low solubility
between
components

high difference
 in M and I surface
 energies

Factors:

* temperature of the substrate

* energy of
sputtered atoms
or clusters

 concentration of atoms or clusters on the surface

Easy cases

FeCo-Al₂O₃ FeCo-SiO₂ FeCo-CaF₂

Hard case

FeCo-PbTiO₃ (*multiferroic film*)

<u>Way out</u>

Stabilization of granular structure with "core-shell" nanoparticles

Evaluation of magnetization curves: to estimate anisotropy field H_a and angle α

Difficulties: (i) *M*(*H*) reflects superposition of *in-plane* and *out-of-plane* anisotropies

(ii) dispersion of easy axis orientations

Conclusions on metal-insulator granular films:

- ✤ Ion-beam sputtering on uncooled substrate allows fabrication of metalinsulator films with non-planar, close to perpendicular magnetic anisotropy with angle α of deviation from the film's normal ≈ 20 degrees
- Perpendicular magnetic anisotropy is associated with the <u>columnar-like</u> <u>shape</u> of agglomerations of metallic nanoparticles
- Magnetic properties of films as a whole are governed with the <u>competition between magnetostatic interaction and shape anisotropy</u> of NPs at high metallic contribution
- Magnetostatic interaction leads to the decrease in shape anisotropy (from ~ 8 to 1.5-2 kOe) and to the increase in angle α against films normal (from ~15° to 35°) in external magnetic field that can be corrected by <u>additional NPs treatment</u> including NPs partial oxidation and films irradiation by heavy ions

II. MLs with perpendicular magnetic anisotropy: Co/Pt, Co/Pd, Co/Au, etc.:

high anisotropy constant $K_{\mu} = 10^8 \, \text{erg/cm}^3$

- perpendicular recording media
- perpendicular spin-valve (p-SVs)
- magnetic tunnel junction (p-MTJ) devices

Not only applied point is important: Thin porous films are perfect objects for

- 1) Modelling of magnetization reversal mechanisms;
- 2) Tuning of applied parameters: switching fields, coercive force, ratio between saturation magnetization and remanence

Magnetic anisotropy origin:

- Interfacial anisotropy:
 Interface electronic effects –
- Interface electronic effects hybridization between Co 3d and Pd 4d at the interface;
- Stress caused by lattice mismatch between Pd and Co.

Roughness, intermixing, alloy formation at the interface play crucial role

2) Magnetocrystalline anisotropy:

 L_{10} crystalline structures (Co₃Pt, Fe₃Pt)

Chang, J. Alloys Comps 710(5):37-46 · March 2017

<u>MLs with perpendicular magnetic anisotropy: Co/Pt, Co/Pd, Co/Au, etc.:</u> <u>High-density recording media</u>

Ordered arrays of nanodots Recording density is up to 5 Tbit/in² (*Hitachi GST, Toshiba u Fujitsu*)

Superparamagnetic limit

Superparamagnetic limit:

The maximum number of bits per square inch that is commercially feasible on a magnetic storage device (several hundred gigabits per square inch)

Superparamagnetic state:

Magnetic moment is oriented along an easy magnetization axis governed with total magnetic anisotropy

Angle between easy axis and magnetization

For small nanoparticles energy of anisotropy $K_a V = k_B T$, and magnetic moment fluctuates

Quasi-paramagnetic behavior of very small magnetically ordered and weakly interacting particles

Observation of SP state is possible when observation time is larger than time of superparamagnetic relaxation

<u>MLs with perpendicular magnetic anisotropy: Co/Pt, Co/Pd, Co/Au, etc.:</u> <u>High-density recording media</u>

Ordered arrays of nanodots Recording density is up to 5 Tbit/in² (*Hitachi GST, Toshiba u Fujitsu*)

Superparamagnetic limit

Continuous films with nanoporous

structure («antidots»)

Porous self-ordered templates for PPM: Morphology requirements

- Developed morphology of porous metallic films
- Local misalignment of magnetic moments & distorted perpendicular magnetic anisotropy

Morphology of templates is a crucial issue

Co/Pd films on porous *Al*₂*O*₃ templates: SQUID-magnetometry

Morphology

The way out: preparation of template with flattened interpore areas by combination of anodization regimes and Ar ion-beam polishing

Fabricated templates: flattened relief at the expense of ordering

Main objectives research:

- 1. To fabricate flat-surface templates anodized porous matrixes, and prepare porous Co/Pd, Co/Pt ML thin films
- 2. To investigate how the surface relief of Pd/Co/Pd MLs affects magnetic properties of Pd/Co/Pd antidots

Main task of research:

To fabricate percolated perpendicular media of Pd/Co/Pd MLs with perpendicular magnetic anisotropy, enhanced coercive force $(H_C > 2000 \text{ Oe})$ and high squareness $(M_r/M_S \approx 0.8)$

Experimental

TiO₂ or Al₂O₃ templates on Ti/Al foil

- Ti or Al foil is cleaned and oxidized in electrolyte (0.3 % of NH₄F or H₂SO₄, respectively)
- Two-stage anodization of Ti (AI) foil in two-electrode electrochemical cell in the combined regime
- Ion-plasma Ar etching during 20 min. is applied for smoothing of templates surface

TiO₂ or Al₂O₃ templates on Si wafer

- Ti or Al film of 0.27 or 0.4 μm thickness is deposited by magnetron sputtering on Si wafer
- Ti (Al) film is cleaned, oxidized and anodized (two-stage anodization)
- Ion-plasma Ar etching during 10 min. is applied for smoothing of templates surface

[S.K. Lazarouk et al, Thin Solid Films, 526, (2012)]

[Co/Pd]_n multilayers on porous TiO₂ templates (NTs)

[Co/Pd]_n/TiO₂//Si (Ti) Belarusian State University, Minsk, Belarus

X-ray reflectometry, X-ray diffraction & FT EXAFS oscillations

<i>a</i> _{Pd} (Å)	<i>а</i> _{СоРd} (Å)				
Continuous MLs					
3.88	3.79				
Porous MLs					
3.87	3.81				

XRR and XRD proves layered structure and CoPd quasi-alloy at the interface

Magnetic properties: SQUID-magnetometry & MFM

 $[Co/Pd]_n/TiO_2//Si(Ti)$

Ľ

Mechanisms of magnetization reversal:

crossover from Kondorsky (in continuous film) to rotational (in porous film)

Mechanisms of magnetization reversal:

 $[Co/Pd]_n/TiO_2//Si(Ti)$

crossover from *Kondorsky* (in continuous film) to *rotational* (in porous film)

Magnetic properties *vs* **substrate: estimation of** K_{eff}

Co/Pd/TiO₂ // Ti foil

Co/Pd/TiO₂ // Si wafer

 $[Co/Pd]_n/TiO_2//Si(Ti)$

Ľ

In resume: $[Co/Pd]_n/TiO_2$ porous multilayers: Effect of flat-surface template on magnetic properties

Conserved perpendicular anisotropy

- Coercive force $H_{\rm C} = 2700$ Oe
- Squareness: $M_r/M_s = 0.7$
- $K_{\rm eff} = 1.9 \cdot 10^6 \, {\rm erg/cm^3}$

Flat-surface Al_2O_3 templates \rightarrow [Co/Pd]_n porous MLs with smoothed surface

 $[Co/Pd]_n/Al_2O_3//Si$

 $[Co/Pd]_n/Al_2O_3//Si$

X-ray photoelectron spectroscopy

Ordering in Co/Pd and Co/Pt MLs is not affected by the surface morphology

High-resolution XPS

Magnetic properties: fitting with S-W model

 $[Co/Pd]_n/Al_2O_3//Si$

	Coercive field H_C , Oe	M _r /M _s	H _K , Oe
	Continuous ML		
Co/Pd; Co/Pt	1100 – 1200	0.99	
	Porous MLs		
Co/Pd	1900	0.99	2600
Co/Pt	1500	0.99	2000

Comparison of magnetic properties of porous Co/Pd reflects difference between morphology TiO₂ and Al₂O₃ templates

 $[Co/Pd]_n/Al_2O_3//Si$

Fabrication of FM/AFM porous ML with perpendicular exchange bias: coupling between IrMn (AFM) and Co/Pt (FM) layers

AFM layer to pin the magnetization of FM film in a particular direction by interfacial exchange interaction with an AFM layer

AFM layer – IrMn: resistant to corrosion possess high $T_N \approx 400$ °C

*TiO*₂ *porous template on Si*

Si/TiO₂//IrMn/CoFe/[Pt/Co]₂

Si/TiO₂//CoFe/[Pt/Co]₂/IrMn

Dr. Dmitriy Mitin Experimentalphysik IV Institut für Physik Universität Augsburg

First magnetometry results: experimental evidence for exchange bias in FM/AFM porous MLs

First magnetometry results: experimental evidence for exchange bias in FM/AFM porous MLs

Magnetoresistivity

Co/Pt//IrMn MLs

non-symmetric MR effect in the film normal direction different types of MR effect in two opposite directions

- ☆ Anodized templates of TiO₂ and Al₂O₃ with flattened interpore areas favors conservation of perpendicular magnetic anisotropy in porous Co/Pd and Co/Pt thin ML films with smoothed surface relief.
- * Magnetization reversal in porous films proceeds by rotational mechanism and could be considered within Stoner-Wohlfarth model because of the refinement of magnetic domain structure.
- Further progress in fabrication of porous films for spintronic devices should be focused on porous FM/AFM films with FM layers possessing perpendicular magnetic anisotropy.

Financial support:

- 1. Polish Ministry of Science and Education
- 2. Project VAST.HTQT.BELARUS.03/16-17
- 3. National Foundation for Science and Technology Development of Vietnam, Project 103.99-2015.83
- 4. Belarusian State program "Functional materials", BRFFR grant F16V2-004

Collaborators:

<u>Synthesis of templates</u> Prof. S. Lazarouk Ms. Sci. O.Kupreeva

MLs fabrication, XRD, AGM

T.N. Anh Nguyen D. H. Manh D. L. Vu Belarusian University of Informatics and Radioelectronics, Minsk

Institute of Materials Science, Hanoi

<u>MLs fabrication, SQUID, MFM</u> Prof. M. Marszalek Ms. Sci. A. Maximenko

<u>Magnetometry, AFM</u> Dr. J.Kasiuk Dr. V. Bayev Niewodniczanski Institute of Nuclear Physics, Cracow

Institute for Nuclear Problems Belarusian State University, Minsk

Thank you for attention!