

# RTU Course "Theoretical Mechanics (for mechanical engineers)"

## 15325 Teorēt.mehānikas un materiālu pretestības katedra

| General data                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
|--------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Code                                                                     | MTM201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
| Course title                                                             | Theoretical Mechanics (for mechanical engineers)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
| Course status in the programme                                           | Compulsory/Courses of Limited Choice                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
| Course level                                                             | Undergraduate Studies                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |
| Course type                                                              | Academic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
| Field of study                                                           | Mechanics, Mechanical Engineering, Machine Building                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |
| Responsible instructor                                                   | Vība Jānis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |
| Academic staff                                                           | Grāpis Ojārs<br>Grasmanis Bruno<br>Vjaters Ilmārs<br>Novohatska Tatjana<br>Griņevičs Ivans<br>Tipāns Igors                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |
| Volume of the course: parts and credits points                           | 2 parts, 5.0 Credit Points, 7.5 ECTS credits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |
| Language of instruction                                                  | LV, EN, RU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |
| Possibility of distance learning                                         | Not planned                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |
| Maximum auditorium capacity                                              | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |
| Maximum number of students per semester                                  | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |
| Abstract                                                                 | Axiomes. Constraints. Simplification and equilibrium of forces systems. Friction of sliding,<br>rotation and turning. Centre of mass. Tensors of inertia. Kinematics and dynamics of particle.<br>Types of motion of a body. Kinematics and dynamics of particle in different frames of reference.<br>General theorems of dynamics. Dynamics of a rigid body. Method of kinetic-static. Balancing.<br>Gyroscope. D'Alembert's principle. Balansing.                                                                                                    |  |  |  |  |
| Goals and objectives of the course in terms of<br>competences and skills | To acquaint students with the fundamentals of mechanics. In order to achieve this aim the<br>following tasks should be fulfilled:<br>1st Analyse the fundamental relationships of the kinematics, statics and dynamics.<br>2nd Teach students how to solve the task on mechanics applying the computer programs.<br>3rd Improve students' knowledge of physics related to the field of mechanics.<br>4th Teach students the skills required to be proficient in the assessment of the machinery,<br>construction machinery and engineering facilities. |  |  |  |  |
| Structure and tasks of independent studies                               | Within the framework of the present course the students should perform independent work on the following themes:<br>1st Solving the static tasks applying the MathCAD program.<br>2nd Modelling the dynamic tasks applying the Working Model.<br>3rd Calculating force and stress applying the Solid Work Program.                                                                                                                                                                                                                                     |  |  |  |  |
| Recommended literature                                                   | <ul> <li>O. Kepe J. Vība, Teorētiskā mehānika, Rīga, Zvaigzne, 1982.g., 577. lpp;</li> <li>O.Kepe, J.Vība, Teorētiskā mehānika, Dinamika I. Rīga, RTU, 1981., 259.lpp.,</li> <li>O. Kepe J. Vība, Teorētiskā mehānika, Dinamika II., Rīga, RTU, 1996.g., 173. lpp.</li> </ul>                                                                                                                                                                                                                                                                          |  |  |  |  |
| Course prerequisites                                                     | Math. Mechanics. Physics.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |

#### Course outline

| Theme                                                        | Hours |  |  |  |
|--------------------------------------------------------------|-------|--|--|--|
| Introduction.                                                |       |  |  |  |
| Axioms.                                                      |       |  |  |  |
| Constraints                                                  |       |  |  |  |
| Cross force system.                                          |       |  |  |  |
| Dispersed forces system in the plane.                        |       |  |  |  |
| Body equilibrium.                                            |       |  |  |  |
| Crossing forces in space.                                    |       |  |  |  |
| Forces dispersed in space.                                   |       |  |  |  |
| Introduction to kinematics and dynamics.                     |       |  |  |  |
| Point kinematics and dynamics. Translation of body movement. |       |  |  |  |
| Body rotational kinematics and dynamics.                     |       |  |  |  |
| Plane movement kinetics.                                     |       |  |  |  |
| Spherical and the general movement kinetics.                 |       |  |  |  |
| Dalambers principle.                                         |       |  |  |  |
| The general dynamic equation.                                |       |  |  |  |
| Mechanical system motion. Special cases.                     |       |  |  |  |

#### Learning outcomes and assessment

| Learning outcomes                                                                                                 | Assessment methods                   |  |  |
|-------------------------------------------------------------------------------------------------------------------|--------------------------------------|--|--|
| At the end of the course students will be able to evaluate the mechanical processes in nature in different forms. | Laboratory work.                     |  |  |
| At the end of the course students will be able to provide examples of object motion and equilibrium.              | Practical work/tasks                 |  |  |
| The end of the course will be able to analyze the mechanisms and machinery.                                       | Questions at the end of the lecture. |  |  |
| At the end of the course students will be able to distinguish between static and dynamic tasks.                   | Assessment test                      |  |  |
| At the end of the course students will be able to formulate tasks on the analysis of mechanical objects.          | Assessment test                      |  |  |
| At the end of the course students will be able to evaluate the mechanical engineering problems.                   | Exam                                 |  |  |

### Study subject structure

| Part | СР  | ECTS | Hours per Week |           |      |      | Tests |      |
|------|-----|------|----------------|-----------|------|------|-------|------|
|      |     |      | Lectures       | Practical | Lab. | Test | Exam  | Work |
| 1.   | 2.0 | 3.0  | 1.0            | 1.0       | 0.0  |      | *     |      |
| 2.   | 3.0 | 4.5  | 2.0            | 1.0       | 0.0  |      | *     |      |