Numerical investigation on multiclass probabilistic classification of damage location in a plate structure

Rims Janeliukstis*, Sandris Rucevskis, Andrejs Kovalovs and Andris Chate

Institute of Materials and Structures, Riga Technical University, Riga, Latvia

e-mail of the corresponding author: Rims.Janeliukstis_1@rtu.lv
Problem statement

taken from www.ptclwg.com

taken from www.rbengineering.com

Solution

nondestructive structural health monitoring methods
Damage localisation in thin composite structures based on machine learning algorithms

k- nearest neighbours Decision trees
Specimen model

- cantilevered CFRP plate (360 x 10 x 2.4 mm)
- Laminate lay-up \([90/90/0/0/45/45/-45/-45/-45/45/0/90]_s\)
- \(E_x = 110 \text{ GPa, } E_y = 7 \text{ GPa, } G_{xy} = G_{yz} = 4.5 \text{ GPa, } \nu_{xy} = 0.33, \rho = 1560 \text{ kg/m}^3\)
- 11 strain sensors
Specimen model

ANSYS model – 8-node shear deformable shell elements
(72 x 20 elements)

Damage – an artificial mass with 5 % and 10 % fractions of plate’s mass is placed at selected nodes of the plate. Additional mass is applied by using **MASS21 finite element**.

Modal analysis (block Lanczos method) to extract 4 eigenfrequencies and eigenmodes.
Plate is partitioned into 18 zones

Damage is applied to 9 points in each zone

18 x 9 = 162 data sets with 11 strain values

Predictors
Damage localization

<table>
<thead>
<tr>
<th>Step Description</th>
<th>Equations/Actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input strain values for each subzone</td>
<td>→ 162 subzones × 11 strain sensors</td>
</tr>
</tbody>
</table>
| Build a classification model | → k-NN (define k and distance)
 → decision trees (define max number of splits) |
| Calculate resubstitution loss | → k-NN (update k and distance to yield minimum)
 → decision trees (update max number of splits to yield minimum) |
| Cross-validate the model | → k-NN and decision trees (update K to yield min cross-validation error) |
| Make prediction for future data | → Compute **confusion matrix** and ROC curve
 → Estimate posterior probabilities |
| Classify new unknown data in terms of affiliation to any of 18 zones | → Perform k-NN search
 → Build a decision tree |

Make a decision regarding location of damage based on majority voting for 5% and 10% damage severities
RESULTS
Cross-validation error

k-NN

<table>
<thead>
<tr>
<th>Damage severity</th>
<th>10 %</th>
<th>5 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of K-folds</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>K-fold loss (%)</td>
<td>0.62</td>
<td>0.62</td>
</tr>
</tbody>
</table>

Decision trees

<table>
<thead>
<tr>
<th>Damage severity</th>
<th>10 %</th>
<th>5 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of K-folds</td>
<td>27</td>
<td>27</td>
</tr>
<tr>
<td>K-fold loss (%)</td>
<td>15.43</td>
<td>16.67</td>
</tr>
</tbody>
</table>
Resubstitution error

k-NN

<table>
<thead>
<tr>
<th>Damage severity</th>
<th>10 %</th>
<th>5 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>k</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Resubstitution loss (%)</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Decision trees

<table>
<thead>
<tr>
<th>Damage severity</th>
<th>10 %</th>
<th>5 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum number of splits</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Resubstitution loss (%)</td>
<td>1.23</td>
<td>1.23</td>
</tr>
</tbody>
</table>
Confusion matrix

A perfect classification for both damage severities

A slight misclassification in classes no. 2 and 4
ROC curves are computed for each of 18 classes.

AUC values for all classes are 1, except for classes no. 1, 2, 3 and 4.

AUC is equal to 1.
2 new points subjected to classification with k-NN and decision trees

<table>
<thead>
<tr>
<th>Damage severity 10 %</th>
<th>Damage severity 5 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>X₁ 0.34 Y₁ 0.005</td>
<td>X₁ 0.13 Y₁ 0.035</td>
</tr>
<tr>
<td>X₂ 0.2 Y₂ 0.05</td>
<td>X₂ 0.32 Y₂ 0.07</td>
</tr>
</tbody>
</table>

Point 1 – zone 17
Point 2 – between zones 9, 10, 11 and 12

Point 1 – zone 7
Point 2 – between zones 16 and 18
Damage localization

k-NN search
Damage localization

- **5%**
 - Unknown point 1 – Zone 7
 - Unknown point 2 – Zone 18

- **10%**
 - Unknown point 1 – Zone 17
 - Unknown point 2 – Zone 9
Conclusions

• The damage localization methodology for plate structures based on data classification with \(k \)-NN and decision trees is proposed.

• Classification parameters are optimized to minimize the resubstitution and cross-validation errors.

• The performance of classifiers is assessed through ROC curves with accompanying AUC metric and confusion matrices. These metrics suggest a high quality of classification.

• It is found that there is a good agreement between the localization results of both classifiers and these results are in accordance with the actual coordinates of query points for both severities of damage (5 % and 10 %).
Acknowledgement: The research leading to these results has received the funding from Latvia state research programme under grant agreement "Innovative Materials and Smart Technologies for Environmental Safety, IMATEH".

Thank You for your attention!