

Numerical investigation on multiclass probabilistic classification of damage location in a plate structure

Rims Janeliukstis*, Sandris Rucevskis, Andrejs Kovalovs and Andris Chate

Institute of Materials and Structures, Riga Technical University, Riga, Latvia

e-mail of the corresponding author: *Rims.Janeliukstis* 1@*rtu.lv*

taken from <u>www.ptclwg.com</u>

taken from <u>www.rbengineering.com</u>

Solution

nondestructive structural health monitoring methods

Damage localisation in thin composite structures based on machine learning algorithms

k- nearest neighbours

Decision trees

- cantilevered CFRP plate (360 x 10 x 2.4 mm)
- Laminate lay-up [90/90/0/0/45/45/-45/-45/-45/45/0/90]_s
- $E_x = 110 \text{ GPa}, E_y = 7 \text{ GPa}, G_{xy} = G_{yz} = 4.5 \text{ GPa}, v_{xy} = 0.33, \rho = 1560 \text{ kg/m}^3.$
- 11 strain sensors

ANSYS model – 8-node shear deformable shell elements (72 x 20 elements)

Damage – an artificial mass with 5 % and 10 % fractions of plate's mass is placed at selected nodes of the plate. Additional mass is applied by using **MASS21 finite element**.

Modal analysis (block Lanczos method) to extract **4** eigenfrequencies and eigenmodes.

Class labels

Plate is partitioned into 18 zones

Damage is applied to 9 points in each zone

RIGA TECHNICAL UNIVERSITY Damage localiza	atio	International Conference on Structural Engineering Dynamics ICEDyn 2017 Ericeira, Portugal, 3-5 July 2017
Input strain values for each subzone	\rightarrow	162 subzones × 11 strain sensors
	\rightarrow	<i>k</i> -NN (define <i>k</i> and distance)
Build a classification model	\rightarrow	decision trees (define max number of splits)
Calculate resubstitution loss	\rightarrow	<i>k</i> -NN (update <i>k</i> and distance to yield minimum)
	\rightarrow	decision trees (update max number of splits to yield minimum)
Cross-validate the model	\rightarrow	<i>k</i> -NN and decision trees (update K to yield min cross-validation error)
	\rightarrow	Compute confusion matrix and ROC curve
Make prediction for future data	\rightarrow	Estimate posterior probabilities
Classify new unknown data in terms of	\rightarrow	Perform k-NN search
affiliation to any of 18 zones	\rightarrow	Build a decision tree

Make a decision regarding location of damage based on majority voting for 5 % and 10 % damage severities

RESULTS

Decision trees

Damage severity	10 %	5 %
Number of K-folds	27	27
K-fold loss (%)	15.43	16.67

k-NN

Damage severity	10 %	5 %
Number of K-folds	9	9
K-fold loss (%)	0.62	0.62

Resubstitution error

International Conference on Structural Engineering Dynamics ICEDyn 2017 Ericeira, Portugal, 3-5 July 2017

k-NN

Decision trees

Damage severity	10 %	5 %
k	3	3
Resubstitution loss (%)	0	0

Damage severity	10 %	5 %
Maximum number of splits	3	3
Resubstitution loss (%)	1.23	1.23

RIGA TECHNICAL UNIVERSITY Confusion matrix

International Conference on Structural Engineering Dynamics ICEDyn 2017 Ericeira, Portugal, 3-5 July 2017

A perfect classification for both damage severities

A slight misclassification in classes no. 2 and 4

2 new points subjected to classification with k-NN and decision trees

Damage severity 10 %			Damage severity 5 %				
X_1	0.34	Y ₁	0.005	\mathbf{X}_{1}	0.13	Y_1	0.035
X_2	0.2	Y_2	0.05	X_2	0.32	Y_2	0.07

Point 1 – zone 17 Point 1 – zone 7

Point 2 – between zones 9, 10, 11 and 12 Point 2 – between zones 16 and 18

k-NN search

Unknown point 1 – Zone 7 Unknown point 2 – Zone 18

10 %

Unknown point 1 – Zone 17 Unknown point 2 – Zone 9

- The damage localization methodology for plate structures based on data classification with *k*-NN and decision trees is proposed.
- Classification parameters are optimized to minimize the resubstitution and cross-validation errors.
- The performance of classifiers is assessed through ROC curves with accompanying AUC metric and confusion matrices. These metrics suggest a high quality of classification.
- It is found that there is a good agreement between the localization results of both classifiers and these results are in accordance with the actual coordinates of query points for both severities of damage (5 % and 10 %).

Acknowledgement: The research leading to these results has received the funding from Latvia state research programme under grant agreement "Innovative Materials and Smart Technologies for Environmental Safety, IMATEH".

Thank You for your attention!

tudiju un zinātnes administrācija